
Foolbox Documentation
Release 2.4.0

Jonas Rauber & Wieland Brendel

Feb 07, 2020

User Guide

1 Installation 3
1.1 Stable release . 3
1.2 Pre-release versions . 3
1.3 Development version . 3
1.4 Contributing to Foolbox . 4

2 Tutorial 5
2.1 Creating a model . 5
2.2 Specifying the criterion . 5
2.3 Running the attack . 6
2.4 Visualizing the adversarial examples . 6
2.5 External Resources . 6

3 Examples 7
3.1 Running an attack . 7
3.2 Creating a model . 9
3.3 Applying an attack . 11
3.4 Creating an untargeted adversarial for a PyTorch model . 11
3.5 Creating a targeted adversarial for the Keras ResNet model . 12

4 Advanced 13
4.1 Implicit . 13
4.2 Explicit . 13

5 Model Zoo 15
5.1 Downloading a model . 15

6 Development 17
6.1 Running Tests . 17
6.2 Style Guide . 17
6.3 New Adversarial Attacks . 17

7 FAQ 19

8 foolbox.models 21
8.1 Models . 21
8.2 Wrappers . 21

i

8.3 Detailed description . 22

9 foolbox.criteria 53
9.1 Criteria . 53
9.2 Examples . 53
9.3 Detailed description . 54

10 foolbox.zoo 59
10.1 Get Model . 59
10.2 Fetch Weights . 60

11 foolbox.distances 61
11.1 Distances . 61
11.2 Aliases . 61
11.3 Base class . 61
11.4 Detailed description . 62

12 foolbox.attacks 63
12.1 Gradient-based attacks . 63
12.2 Score-based attacks . 80
12.3 Decision-based attacks . 81
12.4 Other attacks . 91

13 foolbox.adversarial 97

14 foolbox.utils 101

15 foolbox.v1.attacks 103
15.1 Gradient-based attacks . 103
15.2 Score-based attacks . 121
15.3 Decision-based attacks . 123
15.4 Other attacks . 132

16 foolbox.v1.adversarial 137

17 Indices and tables 141

Bibliography 143

Python Module Index 147

Index 149

ii

Foolbox Documentation, Release 2.4.0

Foolbox is a Python toolbox to create adversarial examples that fool neural networks.

It comes with support for many frameworks to build models including

• TensorFlow

• PyTorch

• Keras

• JAX

• MXNet

• Theano

• Lasagne

and it is easy to extend to other frameworks.

In addition, it comes with a large collection of adversarial attacks, both gradient-based attacks as well as black-box
attacks. See foolbox.attacks for details.

The source code and a minimal working example can be found on GitHub.

User Guide 1

https://github.com/bethgelab/foolbox#example
https://github.com/bethgelab/foolbox

Foolbox Documentation, Release 2.4.0

2 User Guide

CHAPTER 1

Installation

Foolbox is a Python package to create adversarial examples. It supports Python 3.5 and newer (try Foolbox 1.x if you
still need to use Python 2.7).

1.1 Stable release

You can install the latest stable release of Foolbox from PyPI using pip:

pip install foolbox

Make sure that pip installs packages for Python 3, otherwise you might need to use pip3 instead of pip.

1.2 Pre-release versions

You can install the latest stable release of Foolbox from PyPI using pip:

pip install foolbox --pre

Make sure that pip installs packages for Python 3, otherwise you might need to use pip3 instead of pip.

1.3 Development version

Alternatively, you can install the latest development version of Foolbox from GitHub. We try to keep the master branch
stable, so this version should usually work fine. Feel free to open an issue on GitHub if you encounter any problems.

pip install https://github.com/bethgelab/foolbox/archive/master.zip

3

Foolbox Documentation, Release 2.4.0

1.4 Contributing to Foolbox

If you would like to contribute the development of Foolbox, install it in editable mode:

git clone https://github.com/bethgelab/foolbox.git
cd foolbox
pip install --editable .

To contribute your changes, you will need to fork the Foolbox repository on GitHub. You can than add it as a remote:

git remote add fork git@github.com/<your-github-name>/foolbox.git

You can now commit your changes, push them to your fork and create a pull-request to contribute them to Foolbox.
See Running Tests for more information on the necessary tools and conventions.

4 Chapter 1. Installation

CHAPTER 2

Tutorial

This tutorial will show you how an adversarial attack can be used to find adversarial examples for a model.

2.1 Creating a model

For the tutorial, we will target VGG19 implemented in TensorFlow, but it is straight forward to apply the same to other
models or other frameworks such as Theano or PyTorch.

import tensorflow as tf

images = tf.placeholder(tf.float32, (None, 224, 224, 3))
preprocessed = vgg_preprocessing(images)
logits = vgg19(preprocessed)

To turn a model represented as a standard TensorFlow graph into a model that can be attacked by the Adversarial
Toolbox, all we have to do is to create a new TensorFlowModel instance:

from foolbox.models import TensorFlowModel

model = TensorFlowModel(images, logits, bounds=(0, 255))

2.2 Specifying the criterion

To run an adversarial attack, we need to specify the type of adversarial we are looking for. This can be done using the
Criterion class.

from foolbox.criteria import TargetClassProbability

target_class = 22
criterion = TargetClassProbability(target_class, p=0.99)

5

Foolbox Documentation, Release 2.4.0

2.3 Running the attack

Finally, we can create and apply the attack:

from foolbox.attacks import LBFGSAttack

attack = LBFGSAttack(model, criterion)
images, labels = foolbox.utils.samples(dataset='imagenet', batchsize=16, data_format=
→˓'channels_last', bounds=(0, 255))
adversarial = attack(image, label=label)

2.4 Visualizing the adversarial examples

To plot the adversarial example we can use matplotlib:

import matplotlib.pyplot as plt

plt.subplot(1, 3, 1)
plt.imshow(image)

plt.subplot(1, 3, 2)
plt.imshow(adversarial)

plt.subplot(1, 3, 3)
plt.imshow(adversarial - image)

2.5 External Resources

If you would like to share your Foolbox tutorial or example code, please let us know by opening an issue or pull-request
on GitHub and we would be happy to add it to this list.

• Fashion-MNIST by akash-joshi

6 Chapter 2. Tutorial

https://github.com/akash-joshi/adversarial-comparer

CHAPTER 3

Examples

Here you can find a collection of examples how Foolbox models can be created using different deep learning frame-
works and some full-blown attack examples at the end.

3.1 Running an attack

3.1.1 Running a batch attack against a PyTorch model

import foolbox
import numpy as np
import torchvision.models as models

instantiate model (supports PyTorch, Keras, TensorFlow (Graph and Eager), MXNet and
→˓many more)
model = models.resnet18(pretrained=True).eval()
preprocessing = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], axis=-3)
fmodel = foolbox.models.PyTorchModel(model, bounds=(0, 1), num_classes=1000,
→˓preprocessing=preprocessing)

get a batch of images and labels and print the accuracy
images, labels = foolbox.utils.samples(dataset='imagenet', batchsize=16, data_format=
→˓'channels_first', bounds=(0, 1))
print(np.mean(fmodel.forward(images).argmax(axis=-1) == labels))
-> 0.9375

apply the attack
attack = foolbox.attacks.FGSM(fmodel)
adversarials = attack(images, labels)
if the i'th image is misclassfied without a perturbation, then adversarials[i] will
→˓be the same as images[i]
if the attack fails to find an adversarial for the i'th image, then adversarials[i]
→˓will all be np.nan

(continues on next page)

7

Foolbox Documentation, Release 2.4.0

(continued from previous page)

Foolbox guarantees that all returned adversarials are in fact in adversarials
print(np.mean(fmodel.forward(adversarials).argmax(axis=-1) == labels))
-> 0.0

In rare cases, it can happen that attacks return adversarials that are so close to
→˓the decision boundary,
that they actually might end up on the other (correct) side if you pass them
→˓through the model again like
above to get the adversarial class. This is because models are not numerically
→˓deterministic (on GPU, some
operations such as `sum` are non-deterministic by default) and indepedent between
→˓samples (an input might
be classified differently depending on the other inputs in the same batch).

You can always get the actual adversarial class that was observed for that sample
→˓by Foolbox by
passing `unpack=False` to get the actual `Adversarial` objects:
attack = foolbox.attacks.FGSM(fmodel, distance=foolbox.distances.Linf)
adversarials = attack(images, labels, unpack=False)

adversarial_classes = np.asarray([a.adversarial_class for a in adversarials])
print(labels)
print(adversarial_classes)
print(np.mean(adversarial_classes == labels)) # will always be 0.0

The `Adversarial` objects also provide a `distance` attribute. Note that the
→˓distances
can be 0 (misclassified without perturbation) and inf (attack failed).
distances = np.asarray([a.distance.value for a in adversarials])
print("{:.1e}, {:.1e}, {:.1e}".format(distances.min(), np.median(distances),
→˓distances.max()))
print("{} of {} attacks failed".format(sum(adv.distance.value == np.inf for adv in
→˓adversarials), len(adversarials)))
print("{} of {} inputs misclassified without perturbation".format(sum(adv.distance.
→˓value == 0 for adv in adversarials), len(adversarials)))

3.1.2 Running an attack on single sample against a Keras model

import foolbox
import keras
import numpy as np
from keras.applications.resnet50 import ResNet50

instantiate model
keras.backend.set_learning_phase(0)
kmodel = ResNet50(weights='imagenet')
preprocessing = dict(flip_axis=-1, mean=np.array([104, 116, 123])) # RGB to BGR and
→˓mean subtraction
fmodel = foolbox.models.KerasModel(kmodel, bounds=(0, 255),
→˓preprocessing=preprocessing)

get source image and label
(continues on next page)

8 Chapter 3. Examples

Foolbox Documentation, Release 2.4.0

(continued from previous page)

image, label = foolbox.utils.imagenet_example()

apply attack on source image
attack = foolbox.v1.attacks.FGSM(fmodel)
adversarial = attack(image, label)
if the attack fails, adversarial will be None and a warning will be printed

3.2 Creating a model

3.2.1 Keras: ResNet50

import keras
import numpy as np
import foolbox

keras.backend.set_learning_phase(0)
kmodel = keras.applications.resnet50.ResNet50(weights='imagenet')
preprocessing = dict(flip_axis=-1, mean=np.array([104, 116, 123])) # RGB to BGR and
→˓mean subtraction
model = foolbox.models.KerasModel(kmodel, bounds=(0, 255),
→˓preprocessing=preprocessing)

image, label = foolbox.utils.imagenet_example()
print(np.argmax(model.forward_one(image)), label)

3.2.2 PyTorch: ResNet18

You might be interested in checking out the full PyTorch example at the end of this document.

import torchvision.models as models
import numpy as np
import foolbox

instantiate the model
resnet18 = models.resnet18(pretrained=True).cuda().eval() # for CPU, remove cuda()
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
model = foolbox.models.PyTorchModel(resnet18, bounds=(0, 1), num_classes=1000,
→˓preprocessing=(mean, std))

image, label = foolbox.utils.imagenet_example(data_format='channels_first')
image = image / 255
print(np.argmax(model.forward_one(image)), label)

3.2.3 TensorFlow: VGG19

First, create the model in TensorFlow.

3.2. Creating a model 9

Foolbox Documentation, Release 2.4.0

import tensorflow as tf
from tensorflow.contrib.slim.nets import vgg
import numpy as np
import foolbox

images = tf.placeholder(tf.float32, shape=(None, 224, 224, 3))
preprocessed = images - [123.68, 116.78, 103.94]
logits, _ = vgg.vgg_19(preprocessed, is_training=False)
restorer = tf.train.Saver(tf.trainable_variables())

image, _ = foolbox.utils.imagenet_example()

Then transform it into a Foolbox model using one of these four options:

Option 1

This option is recommended if you want to keep the code as short as possible. It makes use of the TensorFlow session
created by Foolbox internally if no default session is set.

with foolbox.models.TensorFlowModel(images, logits, (0, 255)) as model:
restorer.restore(model.session, '/path/to/vgg_19.ckpt')
print(np.argmax(model.forward_one(image)))

Option 2

This option is recommended if you want to create the TensorFlow session yourself.

with tf.Session() as session:
restorer.restore(session, '/path/to/vgg_19.ckpt')
model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
print(np.argmax(model.forward_one(image)))

Option 3

This option is recommended if you want to avoid nesting context managers, e.g. during interactive development.

session = tf.InteractiveSession()
restorer.restore(session, '/path/to/vgg_19.ckpt')
model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
print(np.argmax(model.forward_one(image)))
session.close()

Option 4

This is possible, but usually one of the other options should be preferred.

session = tf.Session()
with session.as_default():

restorer.restore(session, '/path/to/vgg_19.ckpt')
model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
print(np.argmax(model.forward_one(image)))

session.close()

10 Chapter 3. Examples

Foolbox Documentation, Release 2.4.0

3.3 Applying an attack

Once you created a Foolbox model (see the previous section), you can apply an attack.

3.3.1 FGSM (GradientSignAttack)

create a model (see previous section)
fmodel = ...

get source image and label
image, label = foolbox.utils.imagenet_example()

apply attack on source image
attack = foolbox.v1.attacks.FGSM(fmodel)
adversarial = attack(image, label)

3.4 Creating an untargeted adversarial for a PyTorch model

import foolbox
import torch
import torchvision.models as models
import numpy as np

instantiate the model
resnet18 = models.resnet18(pretrained=True).eval()
if torch.cuda.is_available():

resnet18 = resnet18.cuda()
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
fmodel = foolbox.models.PyTorchModel(

resnet18, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))

get source image and label
image, label = foolbox.utils.imagenet_example(data_format='channels_first')
image = image / 255. # because our model expects values in [0, 1]

print('label', label)
print('predicted class', np.argmax(fmodel.forward_one(image)))

apply attack on source image
attack = foolbox.v1.attacks.FGSM(fmodel)
adversarial = attack(image, label)

print('adversarial class', np.argmax(fmodel.forward_one(adversarial)))

outputs

label 282
predicted class 282
adversarial class 281

To plot image and adversarial, don’t forget to move the channel axis to the end before passing them to matplotlib’s
imshow, e.g. using np.transpose(image, (1, 2, 0)).

3.3. Applying an attack 11

Foolbox Documentation, Release 2.4.0

3.5 Creating a targeted adversarial for the Keras ResNet model

import foolbox
from foolbox.models import KerasModel
from foolbox.attacks import LBFGSAttack
from foolbox.criteria import TargetClassProbability
import numpy as np
import keras
from keras.applications.resnet50 import ResNet50
from keras.applications.resnet50 import preprocess_input
from keras.applications.resnet50 import decode_predictions

keras.backend.set_learning_phase(0)
kmodel = ResNet50(weights='imagenet')
preprocessing = dict(flip_axis=-1, mean=np.array([104, 116, 123])) # RGB to BGR and
→˓mean subtraction
fmodel = KerasModel(kmodel, bounds=(0, 255), preprocessing=preprocessing)

image, label = foolbox.utils.imagenet_example()

run the attack
attack = LBFGSAttack(model=fmodel, criterion=TargetClassProbability(781, p=.5))
adversarial = attack(image, label)

show results
print(np.argmax(fmodel.forward_one(adversarial)))
print(foolbox.utils.softmax(fmodel.forward_one(adversarial))[781])
preds = kmodel.predict(preprocess_input(adversarial[np.newaxis].copy()))
print("Top 5 predictions (adversarial: ", decode_forward_one(preds, top=5))

outputs

781
0.832095
Top 5 predictions (adversarial: [[('n04149813', 'scoreboard', 0.83013469), (
→˓'n03196217', 'digital_clock', 0.030192226), ('n04152593', 'screen', 0.016133979), (
→˓'n04141975', 'scale', 0.011708578), ('n03782006', 'monitor', 0.0091574294)]]

12 Chapter 3. Examples

CHAPTER 4

Advanced

The Adversarial class provides an advanced way to specify the adversarial example that should be found by an
attack and provides detailed information about the created adversarial. In addition, it provides a way to improve a
previously found adversarial example by re-running an attack.

from foolbox.v1 import Adversarial
from foolbox.v1.attacks import LBFGSAttack
from foolbox.models import TenosrFlowModel
from foolbox.criteria import TargetClassProbability

4.1 Implicit

model = TensorFlowModel(inputs, logits, bounds=(0, 255))
criterion = TargetClassProbability('ostrich', p=0.99)
attack = LBFGSAttack(model, criterion)

Running the attack by passing an input and a label will implicitly create an Adversarial instance. By passing
unpack=False we tell the attack to return the Adversarial instance rather than a numpy array.

adversarial = attack(image, label=label, unpack=False)

We can then get the actual adversarial input using the image attribute:

adversarial_image = adversarial.perturbed

4.2 Explicit

model = TensorFlowModel(images, logits, bounds=(0, 255))
criterion = TargetClassProbability('ostrich', p=0.99)
attack = LBFGSAttack()

13

Foolbox Documentation, Release 2.4.0

We can also create the Adversarial instance ourselves and then pass it to the attack.

adversarial = Adversarial(model, criterion, image, label)
attack(adversarial)

Again, we can get the image using the image attribute:

adversarial_image = adversarial.perturbed

This approach gives us more flexibility and allows us to specify a different distance measure:

distance = MeanAbsoluteDistance
adversarial = Adversarial(model, criterion, image, label, distance=distance)

14 Chapter 4. Advanced

CHAPTER 5

Model Zoo

This tutorial will show you how the model zoo can be used to run your attack against a robust model.

5.1 Downloading a model

For this tutorial, we will download the Analysis by Synthesis model implemented in PyTorch and run a FGSM (Gradi-
enSignAttack) against it.

from foolbox import zoo

download the model
model = zoo.get_model(url="https://github.com/bethgelab/AnalysisBySynthesis")

read image and label
image = ...
label = ...

apply attack on source image
attack = foolbox.attacks.FGSM(model)
adversarial = attack(image, label)

15

Foolbox Documentation, Release 2.4.0

16 Chapter 5. Model Zoo

CHAPTER 6

Development

To install Foolbox in editable mode, see the installation instructions under Contributing to Foolbox.

6.1 Running Tests

6.1.1 pytest

To run the tests, you need to have pytest and pytest-cov installed. Afterwards, you can simply run pytest in the root
folder of the project. Some tests will require TensorFlow, PyTorch and the other frameworks, so to run all tests, you
need to have all of them installed. Note however that this can take quite long (Foolbox has many tests) and installing
all frameworks with the correct versions is difficult due to conflicting dependencies. You can also open a pull-request
and then we will run all the tests using travis.

6.2 Style Guide

We use Black to format all code in a consistent and PEP-8 conform way. All pull-requests are checked using both
black and flake8. Simply install black and run black . after all your changes or ideally even on each commit
using pre-commit.

6.3 New Adversarial Attacks

Foolbox makes it easy to develop new adversarial attacks that can be applied to arbitrary models.

To implement an attack, simply subclass the Attack class, implement the __call__()method and decorate it with
the call_decorator(). The call_decorator()will make sure that your __call__() implementation will
be called with an instance of the Adversarial class. You can use this instance to ask for model predictions and
gradients, get the original image and its label and more. In addition, the Adversarial instance automatically keeps

17

https://docs.pytest.org/en/latest/getting-started.html
http://pytest-cov.readthedocs.io/en/latest/readme.html#installation
https://black.readthedocs.io/
https://black.readthedocs.io/en/stable/version_control_integration.html

Foolbox Documentation, Release 2.4.0

track of the best adversarial amongst all the inputs tested by the attack. That way, the implementation of the attack can
focus on the attack logic.

To implement an attack that can make use of the batch support introduced in Foolbox 2.0, implement the
as_generator() method and decorate it with the generator_decorator(). All model calls using the
Adversarial object should use yield.

18 Chapter 6. Development

CHAPTER 7

FAQ

How does Foolbox handle inputs that are misclassified without any perturbation? The attacks will not be run
and instead the unperturbed input is returned as an adversarial with distance 0 to the clean input.

What happens if an attack fails? The attack will return None and the distance will be np.inf.

Why is the returned adversarial not misclassified by my model? Most likely you have a discrepancy between how
you evaluate your model and how you told Foolbox to evaluate it. For example, you might not be using the
same preprocessing. Compare the output of the predictions method of the Foolbox model instance with your
model’s output (logits). This problem can also be caused by non-deterministic models. Make sure that your
model is not stochastic and always returns the same output when given the same input. In rare cases it can also
be that a seemlingly deterministic model becomes numerically stochastic around the decision boundary (e.g.
because of non-deterministic floating point reduce_sum operations). You can always check adversarial.output
and adversarial.adversarial_class to see the output Foolbox got from your model when deciding that this was
an adversarial.

Why are the gradients multiplied by the bounds (max_ - min_)? This scaling is meant to make hyperparameters
such as the epsilon for FGSM independent of the bounds. epsilon = 0.1 thus means that you perturb the input
by 10% relative to the max - max range (which could for example go from 0 to 1 or from 0 to 255).

19

Foolbox Documentation, Release 2.4.0

20 Chapter 7. FAQ

CHAPTER 8

foolbox.models

Provides classes to wrap existing models in different framworks so that they provide a unified API to the attacks.

8.1 Models

Model Base class to provide attacks with a unified interface to
models.

DifferentiableModel Base class for differentiable models.
TensorFlowModel Creates a Model instance from existing TensorFlow

tensors.
TensorFlowEagerModel Creates a Model instance from a TensorFlow model us-

ing eager execution.
PyTorchModel Creates a Model instance from a PyTorch module.
KerasModel Creates a Model instance from a Keras model.
TheanoModel Creates a Model instance from existing Theano ten-

sors.
LasagneModel Creates a Model instance from a Lasagne network.
MXNetModel Creates a Model instance from existing MXNet sym-

bols and weights.
MXNetGluonModel Creates a Model instance from an existing MXNet

Gluon Block.
JAXModel Creates a Model instance from a JAX predict function.
CaffeModel

8.2 Wrappers

ModelWrapper Base class for models that wrap other models.
Continued on next page

21

Foolbox Documentation, Release 2.4.0

Table 2 – continued from previous page
DifferentiableModelWrapper Base class for models that wrap other models and pro-

vide gradient methods.
ModelWithoutGradients Turns a model into a model without gradients.
ModelWithEstimatedGradients Turns a model into a model with gradients estimated by

the given gradient estimator.
CompositeModel Combines predictions of a (black-box) model with the

gradient of a (substitute) model.
EnsembleAveragedModel Reduces stochastic effects in networks by averaging

both forward and backward

8.3 Detailed description

class foolbox.models.Model(bounds, channel_axis, preprocessing=(0, 1))
Base class to provide attacks with a unified interface to models.

The Model class represents a model and provides a unified interface to its predictions. Subclasses must imple-
ment forward and num_classes.

Model instances can be used as context managers and subclasses can require this to allocate and release re-
sources.

Parameters

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_one(self, x)
Takes a single input and returns the logits predicted by the underlying model.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

22 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

Returns

numpy.ndarray Predicted logits with shape (number of classes,).

See also:

forward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.DifferentiableModel(bounds, channel_axis, preprocessing=(0, 1))
Base class for differentiable models.

The DifferentiableModel class can be used as a base class for models that can support gradient back-
propagation. Subclasses must implement gradient and backward.

A differentiable model does not necessarily provide reasonable values for the gradient, the gradient can be
wrong. It only guarantees that the relevant methods can be called.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

backward_one(self, gradient, x)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the input.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (number of
classes,).

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

Returns

numpy.ndarray The gradient of the respective loss w.r.t the input.

See also:

backward()

8.3. Detailed description 23

Foolbox Documentation, Release 2.4.0

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

24 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

gradient_one()

backward()

gradient_one(self, x, label)
Takes a single input and label and returns the gradient of the cross-entropy loss w.r.t. the input.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

gradient()

class foolbox.models.TensorFlowModel(inputs, logits, bounds, channel_axis=3, preprocess-
ing=(0, 1))

Creates a Model instance from existing TensorFlow tensors.

Parameters

inputs [tensorflow.Tensor] The input to the model, usually a tensorflow.placeholder.

logits [tensorflow.Tensor] The predictions of the model, before the softmax.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

8.3. Detailed description 25

Foolbox Documentation, Release 2.4.0

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

26 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

classmethod from_keras(model, bounds, input_shape=None, channel_axis=’auto’, preprocess-
ing=(0, 1))

Alternative constructor for a TensorFlowModel that accepts a tf.keras.Model instance.

Parameters

model [tensorflow.keras.Model] A tensorflow.keras.Model that accepts a single input tensor
and returns a single output tensor representing logits.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0,
255).

input_shape [tuple] The shape of a single input, e.g. (28, 28, 1) for MNIST. If None, tries
to get the the shape from the model’s input_shape attribute.

channel_axis [int or ‘auto’] The index of the axis that represents color channels. If ‘auto’,
will be set automatically based on keras.backend.image_data_format()

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats
or numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”.
If “mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be
given such that “mean” and “std” will be broadcasted to that axis (typically -1 for “chan-
nels_last” and -3 for “channels_first”, but might be different when using e.g. 1D convolu-
tions). Finally, a (negative) “flip_axis” can be specified. This axis will be flipped (before
“mean” is subtracted), e.g. to convert RGB to BGR.

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.TensorFlowEagerModel(model, bounds, num_classes=None, chan-
nel_axis=3, preprocessing=(0, 1))

Creates a Model instance from a TensorFlow model using eager execution.

Parameters

model [a TensorFlow eager model] The TensorFlow eager model that should be attacked. It
will be called with input tensors and should return logits.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

8.3. Detailed description 27

Foolbox Documentation, Release 2.4.0

num_classes [int] If None, will try to infer it from the model’s output shape.

channel_axis [int] The index of the axis that represents color channels.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

28 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.PyTorchModel(model, bounds, num_classes, channel_axis=1, de-
vice=None, preprocessing=(0, 1))

Creates a Model instance from a PyTorch module.

8.3. Detailed description 29

Foolbox Documentation, Release 2.4.0

Parameters

model [torch.nn.Module] The PyTorch model that should be attacked. It should predict logits
or log-probabilities, i.e. predictions without the softmax.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

num_classes [int] Number of classes for which the model will output predictions.

channel_axis [int] The index of the axis that represents color channels.

device [string] A string specifying the device to do computation on. If None, will default to
“cuda:0” if torch.cuda.is_available() or “cpu” if not.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

30 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

8.3. Detailed description 31

Foolbox Documentation, Release 2.4.0

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.JAXModel(predict, bounds, num_classes, channel_axis=3, preprocessing=(0,
1))

Creates a Model instance from a JAX predict function.

Parameters

predict [function] The JAX-compatible function that takes a batch of inputs as and returns a
batch of predictions (logits); use functools.partial(predict, params) to pass params if neces-
sary

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

num_classes [int] Number of classes for which the model will output predictions.

channel_axis [int] The index of the axis that represents color channels.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

32 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.KerasModel(model, bounds, channel_axis=’auto’, preprocessing=(0, 1),
predicts=’probabilities’)

Creates a Model instance from a Keras model.

Parameters

model [keras.models.Model] The Keras model that should be attacked.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int or ‘auto’] The index of the axis that represents color channels. If ‘auto’, will
be set automatically based on keras.backend.image_data_format()

8.3. Detailed description 33

Foolbox Documentation, Release 2.4.0

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

predicts [str] Specifies whether the Keras model predicts logits or probabilities. Logits are
preferred, but probabilities are the default.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

34 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.TheanoModel(inputs, logits, bounds, num_classes, channel_axis=1, prepro-
cessing=[0, 1])

Creates a Model instance from existing Theano tensors.

8.3. Detailed description 35

Foolbox Documentation, Release 2.4.0

Parameters

inputs [theano.tensor] The input to the model.

logits [theano.tensor] The predictions of the model, before the softmax.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

num_classes [int] Number of classes for which the model will output predictions.

channel_axis [int] The index of the axis that represents color channels.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

36 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

8.3. Detailed description 37

Foolbox Documentation, Release 2.4.0

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.LasagneModel(input_layer, logits_layer, bounds, channel_axis=1, prepro-
cessing=(0, 1))

Creates a Model instance from a Lasagne network.

Parameters

input_layer [lasagne.layers.Layer] The input to the model.

logits_layer [lasagne.layers.Layer] The output of the model, before the softmax.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

class foolbox.models.MXNetModel(data, logits, args, ctx, num_classes, bounds, channel_axis=1,
aux_states=None, preprocessing=(0, 1))

Creates a Model instance from existing MXNet symbols and weights.

Parameters

data [mxnet.symbol.Variable] The input to the model.

logits [mxnet.symbol.Symbol] The predictions of the model, before the softmax.

args [dictionary mapping str to mxnet.nd.array] The parameters of the model.

ctx [mxnet.context.Context] The device, e.g. mxnet.cpu() or mxnet.gpu().

num_classes [int] The number of classes.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

aux_states [dictionary mapping str to mxnet.nd.array] The states of auxiliary parameters of the
model.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”
and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

38 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

8.3. Detailed description 39

Foolbox Documentation, Release 2.4.0

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.MXNetGluonModel(block, bounds, num_classes, ctx=None, chan-
nel_axis=1, preprocessing=(0, 1))

Creates a Model instance from an existing MXNet Gluon Block.

Parameters

block [mxnet.gluon.Block] The Gluon Block representing the model to be run.

ctx [mxnet.context.Context] The device, e.g. mxnet.cpu() or mxnet.gpu().

num_classes [int] The number of classes.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

preprocessing: dict or tuple Can be a tuple with two elements representing mean and stan-
dard deviation or a dict with keys “mean” and “std”. The two elements should be floats or
numpy arrays. “mean” is subtracted from the input, the result is then divided by “std”. If
“mean” and “std” are 1-dimensional arrays, an additional (negative) “axis” key can be given
such that “mean” and “std” will be broadcasted to that axis (typically -1 for “channels_last”

40 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

and -3 for “channels_first”, but might be different when using e.g. 1D convolutions). Fi-
nally, a (negative) “flip_axis” can be specified. This axis will be flipped (before “mean” is
subtracted), e.g. to convert RGB to BGR.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

8.3. Detailed description 41

Foolbox Documentation, Release 2.4.0

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.CaffeModel(net, bounds, channel_axis=1, preprocessing=(0, 1),
data_blob_name=’data’, label_blob_name=’label’, out-
put_blob_name=’output’)

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

42 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

8.3. Detailed description 43

Foolbox Documentation, Release 2.4.0

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.ModelWrapper(model)
Base class for models that wrap other models.

This base class can be used to implement model wrappers that turn models into new models, for example by
preprocessing the input or modifying the gradient.

Parameters

model [Model] The model that is wrapped.

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

44 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.DifferentiableModelWrapper(model)
Base class for models that wrap other models and provide gradient methods.

This base class can be used to implement model wrappers that turn models into new models, for example by
preprocessing the input or modifying the gradient.

Parameters

model [Model] The model that is wrapped.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward_and_gradient(self, x, label)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

8.3. Detailed description 45

Foolbox Documentation, Release 2.4.0

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

class foolbox.models.ModelWithoutGradients(model)
Turns a model into a model without gradients.

class foolbox.models.ModelWithEstimatedGradients(model, gradient_estimator)
Turns a model into a model with gradients estimated by the given gradient estimator.

Parameters

model [Model] The model that is wrapped.

gradient_estimator [GradientEstimatorBase] GradientEstimator object that can esti-
mate gradients for single and batched samples.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

46 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

gradient()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

8.3. Detailed description 47

Foolbox Documentation, Release 2.4.0

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

gradient_one(self, x, label)
Takes a single input and label and returns the gradient of the cross-entropy loss w.r.t. the input.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

gradient()

class foolbox.models.CompositeModel(forward_model, backward_model)
Combines predictions of a (black-box) model with the gradient of a (substitute) model.

Parameters

forward_model [Model] The model that should be fooled and will be used for predictions.

backward_model [Model] The model that provides the gradients.

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

backward_one()

48 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

gradient()

forward(self, inputs)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, inputs, labels)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

8.3. Detailed description 49

Foolbox Documentation, Release 2.4.0

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

class foolbox.models.EnsembleAveragedModel(model, ensemble_size)

Reduces stochastic effects in networks by averaging both forward and backward calculations of the net-
work by creating an ensemble of the same model and averaging over multiple runs (i.e. instances in
the ensemble) as described in [R75f1c0e135b2-1].

Parameters

model [Model] The model that is wrapped.

ensemble_size [int] Number of networks in the ensemble over which the predictions/gradients
will be averaged.

References

[R75f1c0e135b2-1]

backward(self, gradient, inputs)
Backpropagates the gradient of some loss w.r.t. the logits through the underlying model and returns the
gradient of that loss w.r.t to the inputs.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits with shape (batch size,
number of classes).

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray The gradient of the respective loss w.r.t the inputs.

See also:

50 Chapter 8. foolbox.models

Foolbox Documentation, Release 2.4.0

backward_one()

gradient()

forward(self, x)
Takes a batch of inputs and returns the logits predicted by the underlying model.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

See also:

forward_one()

forward_and_gradient(self, x, label)
Takes inputs and labels and returns both the logits predicted by the underlying model and the gradients of
the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Inputs with shape as expected by the model (with the batch dimen-
sion).

labels [numpy.ndarray] Array of the class label of the inputs as an integer in [0, number of
classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

forward_one()

gradient_one()

forward_and_gradient_one(self, x, label)
Takes a single input and label and returns both the logits predicted by the underlying model and the gradient
of the cross-entropy loss w.r.t. the input.

Defaults to individual calls to forward_one and gradient_one but can be overriden by subclasses to provide
a more efficient implementation.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

label [int] Class label of the input as an integer in [0, number of classes).

Returns

numpy.ndarray Predicted logits with shape (batch size, number of classes).

numpy.ndarray The gradient of the cross-entropy loss w.r.t. the input.

See also:

8.3. Detailed description 51

Foolbox Documentation, Release 2.4.0

forward_one()

gradient_one()

gradient(self, inputs, labels)
Takes a batch of inputs and labels and returns the gradient of the cross-entropy loss w.r.t. the inputs.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the inputs.

See also:

gradient_one()

backward()

52 Chapter 8. foolbox.models

CHAPTER 9

foolbox.criteria

Provides classes that define what is adversarial.

9.1 Criteria

We provide criteria for untargeted and targeted adversarial attacks.

Misclassification Defines adversarials as inputs for which the predicted
class is not the original class.

TopKMisclassification Defines adversarials as inputs for which the original
class is not one of the top k predicted classes.

OriginalClassProbability Defines adversarials as inputs for which the probability
of the original class is below a given threshold.

ConfidentMisclassification Defines adversarials as inputs for which the probabil-
ity of any class other than the original is above a given
threshold.

TargetClass Defines adversarials as inputs for which the predicted
class is the given target class.

TargetClassProbability Defines adversarials as inputs for which the probability
of a given target class is above a given threshold.

9.2 Examples

Untargeted criteria:

>>> from foolbox.criteria import Misclassification
>>> criterion1 = Misclassification()

53

Foolbox Documentation, Release 2.4.0

>>> from foolbox.criteria import TopKMisclassification
>>> criterion2 = TopKMisclassification(k=5)

Targeted criteria:

>>> from foolbox.criteria import TargetClass
>>> criterion3 = TargetClass(22)

>>> from foolbox.criteria import TargetClassProbability
>>> criterion4 = TargetClassProbability(22, p=0.99)

Criteria can be combined to create a new criterion:

>>> criterion5 = criterion2 & criterion3

9.3 Detailed description

class foolbox.criteria.Criterion
Base class for criteria that define what is adversarial.

The Criterion class represents a criterion used to determine if predictions for an image are adversarial
given a reference label. It should be subclassed when implementing new criteria. Subclasses must implement
is_adversarial.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.Misclassification
Defines adversarials as inputs for which the predicted class is not the original class.

See also:

TopKMisclassification

54 Chapter 9. foolbox.criteria

Foolbox Documentation, Release 2.4.0

Notes

Uses numpy.argmax to break ties.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.ConfidentMisclassification(p)
Defines adversarials as inputs for which the probability of any class other than the original is above a given
threshold.

Parameters

p [float] The threshold probability. If the probability of any class other than the original is at
least p, the image is considered an adversarial. It must satisfy 0 <= p <= 1.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

9.3. Detailed description 55

Foolbox Documentation, Release 2.4.0

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.TopKMisclassification(k)
Defines adversarials as inputs for which the original class is not one of the top k predicted classes.

For k = 1, the Misclassification class provides a more efficient implementation.

Parameters

k [int] Number of top predictions to which the reference label is compared to.

See also:

Misclassification Provides a more effcient implementation for k = 1.

Notes

Uses numpy.argsort to break ties.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.TargetClass(target_class)
Defines adversarials as inputs for which the predicted class is the given target class.

Parameters

target_class [int] The target class that needs to be predicted for an image to be considered an
adversarial.

56 Chapter 9. foolbox.criteria

Foolbox Documentation, Release 2.4.0

Notes

Uses numpy.argmax to break ties.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.OriginalClassProbability(p)
Defines adversarials as inputs for which the probability of the original class is below a given threshold.

This criterion alone does not guarantee that the class predicted for the adversarial image is not the original class
(unless p < 1 / number of classes). Therefore, it should usually be combined with a classifcation criterion.

Parameters

p [float] The threshold probability. If the probability of the original class is below this threshold,
the image is considered an adversarial. It must satisfy 0 <= p <= 1.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

9.3. Detailed description 57

Foolbox Documentation, Release 2.4.0

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.TargetClassProbability(target_class, p)
Defines adversarials as inputs for which the probability of a given target class is above a given threshold.

If the threshold is below 0.5, this criterion does not guarantee that the class predicted for the adversarial image
is not the original class. In that case, it should usually be combined with a classification criterion.

Parameters

target_class [int] The target class for which the predicted probability must be above the thresh-
old probability p, otherwise the image is not considered an adversarial.

p [float] The threshold probability. If the probability of the target class is above this threshold,
the image is considered an adversarial. It must satisfy 0 <= p <= 1.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

58 Chapter 9. foolbox.criteria

CHAPTER 10

foolbox.zoo

10.1 Get Model

foolbox.zoo.get_model(url, module_name=’foolbox_model’, **kwargs)
Provides utilities to download foolbox-compatible robust models to easily test attacks against them by simply
providing a git-URL.

Examples

Instantiate a model:

>>> from foolbox import zoo
>>> url = "https://github.com/bveliqi/foolbox-zoo-dummy.git"
>>> model = zoo.get_model(url) # doctest: +SKIP

Only works with a foolbox-zoo compatible repository. I.e. models need to have a foolbox_model.py file with a
create()-function, which returns a foolbox-wrapped model.

Using the kwargs parameter it is possible to input an arbitrary number of parameters to this methods call. These
parameters are forwarded to the instantiated model.

Example repositories:

• https://github.com/bethgelab/AnalysisBySynthesis

• https://github.com/bethgelab/mnist_challenge

• https://github.com/bethgelab/cifar10_challenge

• https://github.com/bethgelab/convex_adversarial

• https://github.com/wielandbrendel/logit-pairing-foolbox.git

• https://github.com/bethgelab/defensive-distillation.git

Parameters

59

https://github.com/bethgelab/AnalysisBySynthesis
https://github.com/bethgelab/mnist_challenge
https://github.com/bethgelab/cifar10_challenge
https://github.com/bethgelab/convex_adversarial
https://github.com/wielandbrendel/logit-pairing-foolbox.git
https://github.com/bethgelab/defensive-distillation.git

Foolbox Documentation, Release 2.4.0

• url – URL to the git repository

• module_name – the name of the module to import

• kwargs – Optional set of parameters that will be used by the to be instantiated model.

Returns a foolbox-wrapped model instance

10.2 Fetch Weights

foolbox.zoo.fetch_weights(weights_uri, unzip=False)
Provides utilities to download and extract packages containing model weights when creating foolbox-zoo com-
patible repositories, if the weights are not part of the repository itself.

Examples

Download and unzip weights:

>>> from foolbox import zoo
>>> url = 'https://github.com/MadryLab/mnist_challenge_models/raw/master/secret.
→˓zip' # noqa F501
>>> weights_path = zoo.fetch_weights(url, unzip=True)

Parameters

• weights_uri – the URI to fetch the weights from

• unzip – should be True if the file to be downloaded is a zipped package

Returns local path where the weights have been downloaded and potentially unzipped to

60 Chapter 10. foolbox.zoo

CHAPTER 11

foolbox.distances

Provides classes to measure the distance between inputs.

11.1 Distances

MeanSquaredDistance Calculates the mean squared error between two inputs.
MeanAbsoluteDistance Calculates the mean absolute error between two inputs.
Linfinity Calculates the L-infinity norm of the difference between

two inputs.
L0 Calculates the L0 norm of the difference between two

inputs.
ElasticNet Calculates the Elastic-Net distance between two inputs.

11.2 Aliases

MSE alias of foolbox.distances.
MeanSquaredDistance

MAE alias of foolbox.distances.
MeanAbsoluteDistance

Linf alias of foolbox.distances.Linfinity
EN Creates a class definition that assigns ElasticNet a fixed

l1_factor.

11.3 Base class

To implement a new distance, simply subclass the Distance class and implement the _calculate() method.

61

Foolbox Documentation, Release 2.4.0

Distance Base class for distances.

11.4 Detailed description

class foolbox.distances.Distance(reference=None, other=None, bounds=None, value=None)
Base class for distances.

This class should be subclassed when implementing new distances. Subclasses must implement _calculate.

class foolbox.distances.MeanSquaredDistance(reference=None, other=None,
bounds=None, value=None)

Calculates the mean squared error between two inputs.

class foolbox.distances.MeanAbsoluteDistance(reference=None, other=None,
bounds=None, value=None)

Calculates the mean absolute error between two inputs.

class foolbox.distances.Linfinity(reference=None, other=None, bounds=None, value=None)
Calculates the L-infinity norm of the difference between two inputs.

class foolbox.distances.L0(reference=None, other=None, bounds=None, value=None)
Calculates the L0 norm of the difference between two inputs.

foolbox.distances.MSE
alias of foolbox.distances.MeanSquaredDistance

foolbox.distances.MAE
alias of foolbox.distances.MeanAbsoluteDistance

foolbox.distances.Linf
alias of foolbox.distances.Linfinity

62 Chapter 11. foolbox.distances

CHAPTER 12

foolbox.attacks

12.1 Gradient-based attacks

class foolbox.attacks.GradientAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Perturbs the input with the gradient of the loss w.r.t. the input, gradually increasing the magnitude until the input
is misclassified.

Does not do anything if the model does not have a gradient.

as_generator(self, a, epsilons=1000, max_epsilon=1)
Perturbs the input with the gradient of the loss w.r.t. the input, gradually increasing the magnitude until
the input is misclassified.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the gradient direction or num-
ber of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

class foolbox.attacks.GradientSignAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Adds the sign of the gradient to the input, gradually increasing the magnitude until the input is misclassified.

63

Foolbox Documentation, Release 2.4.0

This attack is often referred to as Fast Gradient Sign Method and was introduced in [R20d0064ee4c9-1].

Does not do anything if the model does not have a gradient.

References

[R20d0064ee4c9-1]

as_generator(self, a, epsilons=1000, max_epsilon=1)
Adds the sign of the gradient to the input, gradually increasing the magnitude until the input is misclassi-
fied.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the direction of the sign of the
gradient or number of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

foolbox.attacks.FGSM
alias of foolbox.attacks.gradient.GradientSignAttack

class foolbox.attacks.LinfinityBasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Basic Iterative Method introduced in [R37dbc8f24aee-1].

This attack is also known as Projected Gradient Descent (PGD) (without random start) or FGMS^k.

References

See also:

ProjectedGradientDescentAttack

[R37dbc8f24aee-1]

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, ran-
dom_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

64 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.BasicIterativeMethod
alias of foolbox.attacks.iterative_projected_gradient.
LinfinityBasicIterativeAttack

foolbox.attacks.BIM
alias of foolbox.attacks.iterative_projected_gradient.
LinfinityBasicIterativeAttack

class foolbox.attacks.L1BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L1 distance.

See also:

LinfinityBasicIterativeAttack

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, ran-
dom_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

12.1. Gradient-based attacks 65

Foolbox Documentation, Release 2.4.0

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.attacks.L2BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L2 distance.

See also:

LinfinityBasicIterativeAttack

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, ran-
dom_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.attacks.ProjectedGradientDescentAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Projected Gradient Descent Attack introduced in [R367e8e10528a-1] without random start.

When used without a random start, this attack is also known as Basic Iterative Method (BIM) or FGSM^k.

66 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

References

See also:

LinfinityBasicIterativeAttack and RandomStartProjectedGradientDescentAttack

[R367e8e10528a-1]

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.01, iterations=40, ran-
dom_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.ProjectedGradientDescent
alias of foolbox.attacks.iterative_projected_gradient.
ProjectedGradientDescentAttack

foolbox.attacks.PGD
alias of foolbox.attacks.iterative_projected_gradient.
ProjectedGradientDescentAttack

class foolbox.attacks.RandomStartProjectedGradientDescentAttack(model=None,
crite-
rion=<foolbox.criteria.Misclassification
object>, dis-
tance=<class
’fool-
box.distances.MeanSquaredDistance’>,
thresh-
old=None)

The Projected Gradient Descent Attack introduced in [Re6066bc39e14-1] with random start.

12.1. Gradient-based attacks 67

Foolbox Documentation, Release 2.4.0

References

See also:

ProjectedGradientDescentAttack

[Re6066bc39e14-1]

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.01, iterations=40, ran-
dom_start=True, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.RandomProjectedGradientDescent
alias of foolbox.attacks.iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

foolbox.attacks.RandomPGD
alias of foolbox.attacks.iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

class foolbox.attacks.AdamL1BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L1 distance using the Adam optimizer.

See also:

LinfinityBasicIterativeAttack

68 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, ran-
dom_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.attacks.AdamL2BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L2 distance using the Adam optimizer.

See also:

LinfinityBasicIterativeAttack

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, ran-
dom_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

12.1. Gradient-based attacks 69

Foolbox Documentation, Release 2.4.0

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.attacks.AdamProjectedGradientDescentAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, dis-
tance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Projected Gradient Descent Attack introduced in [Re2d4f39a0205-1], [Re2d4f39a0205-2] without random
start using the Adam optimizer.

When used without a random start, this attack is also known as Basic Iterative Method (BIM) or FGSM^k.

References

See also:

LinfinityBasicIterativeAttack and RandomStartProjectedGradientDescentAttack

[Re2d4f39a0205-1], [Re2d4f39a0205-2]

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.01, iterations=40, ran-
dom_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

70 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.AdamProjectedGradientDescent
alias of foolbox.attacks.iterative_projected_gradient.
AdamProjectedGradientDescentAttack

foolbox.attacks.AdamPGD
alias of foolbox.attacks.iterative_projected_gradient.
AdamProjectedGradientDescentAttack

class foolbox.attacks.AdamRandomStartProjectedGradientDescentAttack(model=None,
crite-
rion=<foolbox.criteria.Misclassification
object>,
dis-
tance=<class
’fool-
box.distances.MeanSquaredDistance’>,
thresh-
old=None)

The Projected Gradient Descent Attack introduced in [R3210aa339085-1], [R3210aa339085-2] with random
start using the Adam optimizer.

References

See also:

ProjectedGradientDescentAttack

[R3210aa339085-1], [R3210aa339085-2]

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.01, iterations=40, ran-
dom_start=True, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

12.1. Gradient-based attacks 71

Foolbox Documentation, Release 2.4.0

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.AdamRandomProjectedGradientDescent
alias of foolbox.attacks.iterative_projected_gradient.
AdamRandomStartProjectedGradientDescentAttack

foolbox.attacks.AdamRandomPGD
alias of foolbox.attacks.iterative_projected_gradient.
AdamRandomStartProjectedGradientDescentAttack

class foolbox.attacks.MomentumIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Momentum Iterative Method attack introduced in [R86d363e1fb2f-1]. It’s like the Basic Iterative Method
or Projected Gradient Descent except that it uses momentum.

References

[R86d363e1fb2f-1]

as_generator(self, a, binary_search=True, epsilon=0.3, stepsize=0.06, iterations=10, de-
cay_factor=1.0, random_start=False, return_early=True)

Momentum-based iterative gradient attack known as Momentum Iterative Method.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

binary_search [bool] Whether to perform a binary search over epsilon and stepsize, keeping
their ratio constant and using their values to start the search. If False, hyperparameters
are not optimized. Can also be an integer, specifying the number of binary search steps
(default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

decay_factor [float] Decay factor used by the momentum term.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

72 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

foolbox.attacks.MomentumIterativeMethod
alias of foolbox.attacks.iterative_projected_gradient.MomentumIterativeAttack

class foolbox.attacks.DeepFoolAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Simple and close to optimal gradient-based adversarial attack.

Implementes DeepFool introduced in [Rb4dd02640756-1].

References

[Rb4dd02640756-1]

as_generator(self, a, steps=100, subsample=10, p=None)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.attacks.NewtonFoolAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Implements the NewtonFool Attack.

The attack was introduced in [R6a972939b320-1].

References

[R6a972939b320-1]

as_generator(self, a, max_iter=100, eta=0.01)

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

max_iter [int] The maximum number of iterations.

eta [float] the eta coefficient

12.1. Gradient-based attacks 73

Foolbox Documentation, Release 2.4.0

class foolbox.attacks.DeepFoolL2Attack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

as_generator(self, a, steps=100, subsample=10)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.attacks.DeepFoolLinfinityAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

as_generator(self, a, steps=100, subsample=10)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.attacks.ADefAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, threshold=None)

Adversarial attack that distorts the image, i.e. changes the locations of pixels.

The algorithm is described in [Rf241e6d2664d-1], a Repository with the original code can be found in
[Rf241e6d2664d-2].

References

[Rf241e6d2664d-1], [Rf241e6d2664d-2]

74 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

as_generator(self, a, max_iter=100, smooth=1.0, subsample=10)

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

max_iter [int > 0] Maximum number of iterations (default max_iter = 100).

smooth [float >= 0] Width of the Gaussian kernel used for smoothing. (default is smooth =
0 for no smoothing).

subsample [int >= 2] Limit on the number of the most likely classes that should be consid-
ered. A small value is usually sufficient and much faster. (default subsample = 10)

class foolbox.attacks.SaliencyMapAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Implements the Saliency Map Attack.

The attack was introduced in [R08e06ca693ba-1].

References

[R08e06ca693ba-1]

as_generator(self, a, max_iter=2000, num_random_targets=0, fast=True, theta=0.1,
max_perturbations_per_pixel=7)

Implements the Saliency Map Attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

max_iter [int] The maximum number of iterations to run.

num_random_targets [int] Number of random target classes if no target class is given by
the criterion.

fast [bool] Whether to use the fast saliency map calculation.

theta [float] perturbation per pixel relative to [min, max] range.

max_perturbations_per_pixel [int] Maximum number of times a pixel can be modified.

class foolbox.attacks.IterativeGradientAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Like GradientAttack but with several steps for each epsilon.

12.1. Gradient-based attacks 75

Foolbox Documentation, Release 2.4.0

as_generator(self, a, epsilons=100, max_epsilon=1, steps=10)
Like GradientAttack but with several steps for each epsilon.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the gradient direction or num-
ber of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

steps [int] Number of iterations to run.

class foolbox.attacks.IterativeGradientSignAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Like GradientSignAttack but with several steps for each epsilon.

as_generator(self, a, epsilons=100, max_epsilon=1, steps=10)
Like GradientSignAttack but with several steps for each epsilon.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the direction of the sign of the
gradient or number of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

steps [int] Number of iterations to run.

class foolbox.attacks.CarliniWagnerL2Attack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The L2 version of the Carlini & Wagner attack.

This attack is described in [Rc2cb572b91c5-1]. This implementation is based on the reference implementation
by Carlini [Rc2cb572b91c5-2]. For bounds (0, 1), it differs from [Rc2cb572b91c5-2] because we normalize
the squared L2 loss with the bounds.

References

[Rc2cb572b91c5-1], [Rc2cb572b91c5-2]

76 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

as_generator(self, a, binary_search_steps=5, max_iterations=1000, confidence=0, learn-
ing_rate=0.005, initial_const=0.01, abort_early=True)

The L2 version of the Carlini & Wagner attack.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

binary_search_steps [int] The number of steps for the binary search used to find the optimal
tradeoff-constant between distance and confidence.

max_iterations [int] The maximum number of iterations. Larger values are more accurate;
setting it too small will require a large learning rate and will produce poor results.

confidence [int or float] Confidence of adversarial examples: a higher value produces ad-
versarials that are further away, but more strongly classified as adversarial.

learning_rate [float] The learning rate for the attack algorithm. Smaller values produce
better results but take longer to converge.

initial_const [float] The initial tradeoff-constant to use to tune the relative importance of
distance and confidence. If binary_search_steps is large, the initial constant is not impor-
tant.

abort_early [bool] If True, Adam will be aborted if the loss hasn’t decreased for some time
(a tenth of max_iterations).

static best_other_class(logits, exclude)
Returns the index of the largest logit, ignoring the class that is passed as exclude.

classmethod loss_function(const, a, x, logits, reconstructed_original, confidence, min_, max_)
Returns the loss and the gradient of the loss w.r.t. x, assuming that logits = model(x).

class foolbox.attacks.EADAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, threshold=None)

Gradient based attack which uses an elastic-net regularization [1]. This implementation is based on the attacks
description [1] and its reference implementation [2].

References

[Rf0e4124daa63-1], [Rf0e4124daa63-2]

as_generator(self, a, binary_search_steps=5, max_iterations=1000, confidence=0, ini-
tial_learning_rate=0.01, regularization=0.01, initial_const=0.01, abort_early=True)

The L2 version of the Carlini & Wagner attack.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

12.1. Gradient-based attacks 77

Foolbox Documentation, Release 2.4.0

binary_search_steps [int] The number of steps for the binary search used to find the optimal
tradeoff-constant between distance and confidence.

max_iterations [int] The maximum number of iterations. Larger values are more accurate;
setting it too small will require a large learning rate and will produce poor results.

confidence [int or float] Confidence of adversarial examples: a higher value produces ad-
versarials that are further away, but more strongly classified as adversarial.

initial_learning_rate [float] The initial learning rate for the attack algorithm. Smaller val-
ues produce better results but take longer to converge. During the attack a square-root
decay in the learning rate is performed.

initial_const [float] The initial tradeoff-constant to use to tune the relative importance of
distance and confidence. If binary_search_steps is large, the initial constant is not impor-
tant.

regularization [float] The L1 regularization parameter (also called beta). A value of 0 cor-
responds to the attacks.CarliniWagnerL2Attack attack.

abort_early [bool] If True, Adam will be aborted if the loss hasn’t decreased for some time
(a tenth of max_iterations).

static best_other_class(logits, exclude)
Returns the index of the largest logit, ignoring the class that is passed as exclude.

classmethod loss_function(const, a, x, logits, reconstructed_original, confidence, min_, max_)
Returns the loss and the gradient of the loss w.r.t. x, assuming that logits = model(x).

classmethod project_shrinkage_thresholding(z, x0, regularization, min_, max_)
Performs the element-wise projected shrinkage-thresholding operation

class foolbox.attacks.DecoupledDirectionNormL2Attack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Decoupled Direction and Norm L2 adversarial attack from [R0e9d4da0ab48-1].

References

[R0e9d4da0ab48-1]

as_generator(self, a, steps=100, gamma=0.05, initial_norm=1, quantize=True, levels=256)
The Decoupled Direction and Norm L2 adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Number of steps for the optimization.

gamma [float, optional] Factor by which the norm will be modified. new_norm = norm * (1
+ or - gamma).

init_norm [float, optional] Initial value for the norm.

78 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

quantize [bool, optional] If True, the returned adversarials will have quantized values to the
specified number of levels.

levels [int, optional] Number of levels to use for quantization (e.g. 256 for 8 bit images).

class foolbox.attacks.SparseL1BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Sparse version of the Basic Iterative Method that minimizes the L1 distance introduced in [R0591d14da1c3-1].

References

See also:

L1BasicIterativeAttack

[R0591d14da1c3-1]

as_generator(self, a, q=80.0, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, ran-
dom_start=False, return_early=True)

Sparse version of a gradient-based attack that minimizes the L1 distance.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

q [float] Relative percentile to make gradients sparse (must be in [0, 100))

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.attacks.VirtualAdversarialAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Calculate an untargeted adversarial perturbation by performing a approximated second order optimization step

12.1. Gradient-based attacks 79

Foolbox Documentation, Release 2.4.0

on the KL divergence between the unperturbed predictions and the predictions for the adversarial perturbation.
This attack was introduced in [Rc6516d158ac2-1].

References

[Rc6516d158ac2-1]

as_generator(self, a, xi=1e-05, iterations=1, epsilons=1000, max_epsilon=0.3)

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

xi [float] The finite difference size for performing the power method.

iterations [int] Number of iterations to perform power method to search for second order
perturbation of KL divergence.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the direction of the sign of the
gradient or number of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

12.2 Score-based attacks

class foolbox.attacks.SinglePixelAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Perturbs just a single pixel and sets it to the min or max.

as_generator(self, a, max_pixels=1000)
Perturbs just a single pixel and sets it to the min or max.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

max_pixels [int] Maximum number of pixels to try.

class foolbox.attacks.LocalSearchAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

A black-box attack based on the idea of greedy local search.

80 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

This implementation is based on the algorithm in [Rb320cee6998a-1].

References

[Rb320cee6998a-1]

as_generator(self, a, r=1.5, p=10.0, d=5, t=5, R=150)
A black-box attack based on the idea of greedy local search.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

r [float] Perturbation parameter that controls the cyclic perturbation; must be in [0, 2]

p [float] Perturbation parameter that controls the pixel sensitivity estimation

d [int] The half side length of the neighborhood square

t [int] The number of pixels perturbed at each round

R [int] An upper bound on the number of iterations

12.3 Decision-based attacks

class foolbox.attacks.BoundaryAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

A powerful adversarial attack that requires neither gradients nor probabilities.

This is the reference implementation for the attack introduced in [Re72ca268aa55-1].

Notes

This implementation provides several advanced features:

• ability to continue previous attacks by passing an instance of the Adversarial class

• ability to pass an explicit starting point; especially to initialize a targeted attack

• ability to pass an alternative attack used for initialization

• fine-grained control over logging

• ability to specify the batch size

• optional automatic batch size tuning

• optional multithreading for random number generation

• optional multithreading for candidate point generation

12.3. Decision-based attacks 81

Foolbox Documentation, Release 2.4.0

References

[Re72ca268aa55-1]

as_generator(self, a, iterations=5000, max_directions=25, starting_point=None, ini-
tialization_attack=None, log_every_n_steps=None, spherical_step=0.01,
source_step=0.01, step_adaptation=1.5, batch_size=1, tune_batch_size=True,
threaded_rnd=True, threaded_gen=True, alternative_generator=False, in-
ternal_dtype=<Mock name=’mock.float64’ id=’140409874389032’>, loggin-
gLevel=30)

Applies the Boundary Attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

iterations [int] Maximum number of iterations to run. Might converge and stop before that.

max_directions [int] Maximum number of trials per ieration.

starting_point [numpy.ndarray] Adversarial input to use as a starting point, in particular for
targeted attacks.

initialization_attack [Attack] Attack to use to find a starting point. Defaults to Blende-
dUniformNoiseAttack.

log_every_n_steps [int] Determines verbositity of the logging.

spherical_step [float] Initial step size for the orthogonal (spherical) step.

source_step [float] Initial step size for the step towards the target.

step_adaptation [float] Factor by which the step sizes are multiplied or divided.

batch_size [int] Batch size or initial batch size if tune_batch_size is True

tune_batch_size [bool] Whether or not the batch size should be automatically chosen be-
tween 1 and max_directions.

threaded_rnd [bool] Whether the random number generation should be multithreaded.

threaded_gen [bool] Whether the candidate point generation should be multithreaded.

alternative_generator: bool Whether an alternative implemenation of the candidate gener-
ator should be used.

internal_dtype [np.float32 or np.float64] Higher precision might be slower but is numeri-
cally more stable.

loggingLevel [int] Controls the verbosity of the logging, e.g. logging.INFO or log-
ging.WARNING.

class foolbox.attacks.SpatialAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Adversarially chosen rotations and translations [1].

82 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

This implementation is based on the reference implementation by Madry et al.: https://github.com/MadryLab/
adversarial_spatial

References

[Rdffd25498f9d-1]

as_generator(self, a, do_rotations=True, do_translations=True, x_shift_limits=(-5,
5), y_shift_limits=(-5, 5), angular_limits=(-5, 5), granularity=10, ran-
dom_sampling=False, abort_early=True)

Adversarially chosen rotations and translations.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

do_rotations [bool] If False no rotations will be applied to the image.

do_translations [bool] If False no translations will be applied to the image.

x_shift_limits [int or (int, int)] Limits for horizontal translations in pixels. If one integer is
provided the limits will be (-x_shift_limits, x_shift_limits).

y_shift_limits [int or (int, int)] Limits for vertical translations in pixels. If one integer is
provided the limits will be (-y_shift_limits, y_shift_limits).

angular_limits [int or (int, int)] Limits for rotations in degrees. If one integer is provided
the limits will be [-angular_limits, angular_limits].

granularity [int] Density of sampling within limits for each dimension.

random_sampling [bool] If True we sample translations/rotations randomly within limits,
otherwise we use a regular grid.

abort_early [bool] If True, the attack stops as soon as it finds an adversarial.

class foolbox.attacks.PointwiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Starts with an adversarial and performs a binary search between the adversarial and the original for each dimen-
sion of the input individually.

References

[R739f80a24875-1]

as_generator(self, a, starting_point=None, initialization_attack=None)
Starts with an adversarial and performs a binary search between the adversarial and the original for each
dimension of the input individually.

Parameters

12.3. Decision-based attacks 83

https://github.com/MadryLab/adversarial_spatial
https://github.com/MadryLab/adversarial_spatial

Foolbox Documentation, Release 2.4.0

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

starting_point [numpy.ndarray] Adversarial input to use as a starting point, in particular for
targeted attacks.

initialization_attack [Attack] Attack to use to find a starting point. Defaults to SaltAnd-
PepperNoiseAttack.

class foolbox.attacks.GaussianBlurAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Blurs the input until it is misclassified.

as_generator(self, a, epsilons=1000)
Blurs the input until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if input is a
numpy.ndarray, must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of standard deviations of the Gaussian blur or
number of standard deviations between 0 and 1 that should be tried.

class foolbox.attacks.ContrastReductionAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Reduces the contrast of the input until it is misclassified.

as_generator(self, a, epsilons=1000)
Reduces the contrast of the input until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of contrast levels or number of contrast levels
between 1 and 0 that should be tried. Epsilons are one minus the contrast level.

84 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

class foolbox.attacks.AdditiveUniformNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Adds uniform noise to the input, gradually increasing the standard deviation until the input is misclassified.

__call__(self, inputs, labels, unpack=True, individual_kwargs=None, **kwargs)
Call self as a function.

__class__
alias of abc.ABCMeta

__delattr__(self, name, /)
Implement delattr(self, name).

__dir__()
default dir() implementation

__eq__(self, value, /)
Return self==value.

__format__()
default object formatter

__ge__(self, value, /)
Return self>=value.

__getattribute__(self, name, /)
Return getattr(self, name).

__gt__(self, value, /)
Return self>value.

__hash__(self, /)
Return hash(self).

__init__(self, model=None, criterion=<foolbox.criteria.Misclassification object at
0x7fb3b5b61a58>, distance=<class ’foolbox.distances.MeanSquaredDistance’>, thresh-
old=None)

Initialize self. See help(type(self)) for accurate signature.

__le__(self, value, /)
Return self<=value.

__lt__(self, value, /)
Return self<value.

__ne__(self, value, /)
Return self!=value.

__new__(*args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__(self, /)
Return repr(self).

12.3. Decision-based attacks 85

Foolbox Documentation, Release 2.4.0

__setattr__(self, name, value, /)
Implement setattr(self, name, value).

__sizeof__()
size of object in memory, in bytes

__str__(self, /)
Return str(self).

__subclasshook__()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

as_generator(self, a, epsilons=1000)
Adds uniform or Gaussian noise to the input, gradually increasing the standard deviation until the input is
misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of noise levels or number of noise levels be-
tween 0 and 1 that should be tried.

name(self)
Returns a human readable name that uniquely identifies the attack with its hyperparameters.

Returns

str Human readable name that uniquely identifies the attack with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.attacks.AdditiveGaussianNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Adds Gaussian noise to the input, gradually increasing the standard deviation until the input is misclassified.

__call__(self, inputs, labels, unpack=True, individual_kwargs=None, **kwargs)
Call self as a function.

__class__
alias of abc.ABCMeta

86 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

__delattr__(self, name, /)
Implement delattr(self, name).

__dir__()
default dir() implementation

__eq__(self, value, /)
Return self==value.

__format__()
default object formatter

__ge__(self, value, /)
Return self>=value.

__getattribute__(self, name, /)
Return getattr(self, name).

__gt__(self, value, /)
Return self>value.

__hash__(self, /)
Return hash(self).

__init__(self, model=None, criterion=<foolbox.criteria.Misclassification object at
0x7fb3b5b61a58>, distance=<class ’foolbox.distances.MeanSquaredDistance’>, thresh-
old=None)

Initialize self. See help(type(self)) for accurate signature.

__le__(self, value, /)
Return self<=value.

__lt__(self, value, /)
Return self<value.

__ne__(self, value, /)
Return self!=value.

__new__(*args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__(self, /)
Return repr(self).

__setattr__(self, name, value, /)
Implement setattr(self, name, value).

__sizeof__()
size of object in memory, in bytes

__str__(self, /)
Return str(self).

__subclasshook__()
Abstract classes can override this to customize issubclass().

12.3. Decision-based attacks 87

Foolbox Documentation, Release 2.4.0

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

as_generator(self, a, epsilons=1000)
Adds uniform or Gaussian noise to the input, gradually increasing the standard deviation until the input is
misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of noise levels or number of noise levels be-
tween 0 and 1 that should be tried.

name(self)
Returns a human readable name that uniquely identifies the attack with its hyperparameters.

Returns

str Human readable name that uniquely identifies the attack with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.attacks.SaltAndPepperNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Increases the amount of salt and pepper noise until the input is misclassified.

as_generator(self, a, epsilons=100, repetitions=10)
Increases the amount of salt and pepper noise until the input is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int] Number of steps to try between probability 0 and 1.

repetitions [int] Specifies how often the attack will be repeated.

88 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

class foolbox.attacks.BlendedUniformNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Blends the input with a uniform noise input until it is misclassified.

as_generator(self, a, epsilons=1000, max_directions=1000)
Blends the input with a uniform noise input until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of blending steps or number of blending steps
between 0 and 1 that should be tried.

max_directions [int] Maximum number of random inputs to try.

class foolbox.attacks.HopSkipJumpAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

A powerful adversarial attack that requires neither gradients nor probabilities.

Notes

• ability to switch between two types of distances: MSE and Linf.

• ability to continue previous attacks by passing an instance of the Adversarial class

• ability to pass an explicit starting point; especially to initialize a targeted attack

• ability to pass an alternative attack used for initialization

• ability to specify the batch size

HopSkipJumpAttack was originally proposed by Chen, Jordan and Wainwright. It is a decision-based attack
that requires access to output labels of a model alone. The implementation in Foolbox is based on Boundary
Attack.

References

[Rc6ce1ef324cb-1]

approximate_gradient(self, decision_function, sample, num_evals, delta)
Gradient direction estimation

as_generator(self, a, iterations=64, initial_num_evals=100, max_num_evals=10000, step-
size_search=’geometric_progression’, gamma=1.0, starting_point=None,
batch_size=256, internal_dtype=<Mock name=’mock.float64’
id=’140409874389032’>, log_every_n_steps=None, loggingLevel=30)

Applies HopSkipJumpAttack.

12.3. Decision-based attacks 89

Foolbox Documentation, Release 2.4.0

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

iterations [int] Number of iterations to run.

initial_num_evals: int Initial number of evaluations for gradient estimation. Larger ini-
tial_num_evals increases time efficiency, but may decrease query efficiency.

max_num_evals: int Maximum number of evaluations for gradient estimation.

stepsize_search: str How to search for stepsize; choices are ‘geometric_progression’,
‘grid_search’. ‘geometric progression’ initializes the stepsize by ||x_t - x||_p /
sqrt(iteration), and keep decreasing by half until reaching the target side of the bound-
ary. ‘grid_search’ chooses the optimal epsilon over a grid, in the scale of ||x_t - x||_p.

gamma: float

The binary search threshold theta is gamma / d^1.5 for l2 attack and gamma / d^2 for
linf attack.

starting_point [numpy.ndarray] Adversarial input to use as a starting point, required for
targeted attacks.

batch_size [int] Batch size for model prediction.

internal_dtype [np.float32 or np.float64] Higher precision might be slower but is numeri-
cally more stable.

log_every_n_steps [int] Determines verbositity of the logging.

loggingLevel [int] Controls the verbosity of the logging, e.g. logging.INFO or log-
ging.WARNING.

attack(self, a, iterations)

iterations [int] Maximum number of iterations to run.

binary_search_batch(self, unperturbed, perturbed_inputs, decision_function)
Binary search to approach the boundary.

geometric_progression_for_stepsize(self, x, update, dist, decision_function, cur-
rent_iteration)

Geometric progression to search for stepsize. Keep decreasing stepsize by half until reaching the desired
side of the boundary.

project(self, unperturbed, perturbed_inputs, alphas)
Projection onto given l2 / linf balls in a batch.

select_delta(self, dist_post_update, current_iteration)
Choose the delta at the scale of distance between x and perturbed sample.

class foolbox.attacks.GenAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, threshold=None)

The GenAttack introduced in [R996613153a1e-1].

90 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

This attack is performs a genetic search in order to find an adversarial perturbation in a black-box scenario in as
few queries as possible.

References

[R996613153a1e-1]

as_generator(self, a, generations=10, alpha=1.0, p=0.05, N=10, tau=0.1, search_shape=None, ep-
silon=0.3, binary_search=20)

A black-box attack based on genetic algorithms. Can either try to find an adversarial perturbation for a fixed
epsilon distance or perform a binary search over epsilon values in order to find a minimal perturbation.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

generations [int] Number of generations, i.e. iterations, in the genetic algorithm.

alpha [float] Mutation-range.

p [float] Mutation probability.

N [int] Population size of the genetic algorithm.

tau: float Temperature for the softmax sampling used to determine the parents of the new
crossover.

search_shape [tuple (default: None)] Set this to a smaller image shape than the true shape
to search in a smaller input space. The input will be scaled using a linear interpolation to
match the required input shape of the model.

binary_search [bool or int] Whether to perform a binary search over epsilon and using
their values to start the search. If False, hyperparameters are not optimized. Can also be
an integer, specifying the number of binary search steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

12.4 Other attacks

class foolbox.attacks.BinarizationRefinementAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

For models that preprocess their inputs by binarizing the inputs, this attack can improve adversarials found by
other attacks. It does so by utilizing information about the binarization and mapping values to the corresponding
value in the clean input or to the right side of the threshold.

as_generator(self, a, starting_point=None, threshold=None, included_in=’upper’)
For models that preprocess their inputs by binarizing the inputs, this attack can improve adversarials found
by other attacks. It does this by utilizing information about the binarization and mapping values to the
corresponding value in the clean input or to the right side of the threshold.

12.4. Other attacks 91

Foolbox Documentation, Release 2.4.0

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

starting_point [numpy.ndarray] Adversarial input to use as a starting point.

threshold [float] The treshold used by the models binarization. If none, defaults to
(model.bounds()[1] - model.bounds()[0]) / 2.

included_in [str] Whether the threshold value itself belongs to the lower or upper interval.

class foolbox.attacks.PrecomputedAdversarialsAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Attacks a model using precomputed adversarial candidates.

as_generator(self, a, candidate_inputs, candidate_outputs)
Attacks a model using precomputed adversarial candidates.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

candidate_inputs [numpy.ndarray] The original inputs that will be expected by this attack.

candidate_outputs [numpy.ndarray] The adversarial candidates corresponding to the in-
puts.

class foolbox.attacks.InversionAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Creates “negative images” by inverting the pixel values according to [R57cf8375f1ff-1].

References

[R57cf8375f1ff-1]

as_generator(self, a)
Creates “negative images” by inverting the pixel values.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the underlying model.

labels [numpy.ndarray] Class labels of the inputs as a vector of integers in [0, number of
classes).

92 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

unpack [bool] If true, returns the adversarial inputs as an array, otherwise returns Adversar-
ial objects.

Gradient-based attacks

GradientAttack Perturbs the input with the gradient of the loss w.r.t.
GradientSignAttack Adds the sign of the gradient to the input, gradually in-

creasing the magnitude until the input is misclassified.
FGSM alias of foolbox.attacks.gradient.

GradientSignAttack
LinfinityBasicIterativeAttack The Basic Iterative Method introduced in

[R37dbc8f24aee-1].
BasicIterativeMethod alias of foolbox.attacks.

iterative_projected_gradient.
LinfinityBasicIterativeAttack

BIM alias of foolbox.attacks.
iterative_projected_gradient.
LinfinityBasicIterativeAttack

L1BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L1 distance.

L2BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L2 distance.

ProjectedGradientDescentAttack The Projected Gradient Descent Attack introduced in
[R367e8e10528a-1] without random start.

ProjectedGradientDescent alias of foolbox.attacks.
iterative_projected_gradient.
ProjectedGradientDescentAttack

PGD alias of foolbox.attacks.
iterative_projected_gradient.
ProjectedGradientDescentAttack

RandomStartProjectedGradientDescentAttackThe Projected Gradient Descent Attack introduced in
[Re6066bc39e14-1] with random start.

RandomProjectedGradientDescent alias of foolbox.attacks.
iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

RandomPGD alias of foolbox.attacks.
iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

AdamL1BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L1 distance using the Adam optimizer.

AdamL2BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L2 distance using the Adam optimizer.

AdamProjectedGradientDescentAttack The Projected Gradient Descent Attack introduced in
[Re2d4f39a0205-1], [Re2d4f39a0205-2] without ran-
dom start using the Adam optimizer.

AdamProjectedGradientDescent alias of foolbox.attacks.
iterative_projected_gradient.
AdamProjectedGradientDescentAttack

AdamPGD alias of foolbox.attacks.
iterative_projected_gradient.
AdamProjectedGradientDescentAttack

Continued on next page

12.4. Other attacks 93

Foolbox Documentation, Release 2.4.0

Table 1 – continued from previous page
AdamRandomStartProjectedGradientDescentAttackThe Projected Gradient Descent Attack introduced in

[R3210aa339085-1], [R3210aa339085-2] with random
start using the Adam optimizer.

AdamRandomProjectedGradientDescent alias of foolbox.attacks.
iterative_projected_gradient.
AdamRandomStartProjectedGradientDescentAttack

AdamRandomPGD alias of foolbox.attacks.
iterative_projected_gradient.
AdamRandomStartProjectedGradientDescentAttack

MomentumIterativeAttack The Momentum Iterative Method attack introduced in
[R86d363e1fb2f-1].

MomentumIterativeMethod alias of foolbox.attacks.
iterative_projected_gradient.
MomentumIterativeAttack

DeepFoolAttack Simple and close to optimal gradient-based adversarial
attack.

NewtonFoolAttack Implements the NewtonFool Attack.
DeepFoolL2Attack
DeepFoolLinfinityAttack
ADefAttack Adversarial attack that distorts the image, i.e.
SaliencyMapAttack Implements the Saliency Map Attack.
IterativeGradientAttack Like GradientAttack but with several steps for each ep-

silon.
IterativeGradientSignAttack Like GradientSignAttack but with several steps for each

epsilon.
CarliniWagnerL2Attack The L2 version of the Carlini & Wagner attack.
EADAttack Gradient based attack which uses an elastic-net regular-

ization [1].
DecoupledDirectionNormL2Attack The Decoupled Direction and Norm L2 adversarial at-

tack from [R0e9d4da0ab48-1].
SparseL1BasicIterativeAttack Sparse version of the Basic Iterative Method

that minimizes the L1 distance introduced in
[R0591d14da1c3-1].

VirtualAdversarialAttack Calculate an untargeted adversarial perturbation by per-
forming a approximated second order optimization step
on the KL divergence between the unperturbed predic-
tions and the predictions for the adversarial perturba-
tion.

Score-based attacks

SinglePixelAttack Perturbs just a single pixel and sets it to the min or max.
LocalSearchAttack A black-box attack based on the idea of greedy local

search.

Decision-based attacks

BoundaryAttack A powerful adversarial attack that requires neither gra-
dients nor probabilities.

Continued on next page

94 Chapter 12. foolbox.attacks

Foolbox Documentation, Release 2.4.0

Table 3 – continued from previous page
SpatialAttack Adversarially chosen rotations and translations [1].
PointwiseAttack Starts with an adversarial and performs a binary search

between the adversarial and the original for each dimen-
sion of the input individually.

GaussianBlurAttack Blurs the input until it is misclassified.
ContrastReductionAttack Reduces the contrast of the input until it is misclassified.
AdditiveUniformNoiseAttack Adds uniform noise to the input, gradually increasing

the standard deviation until the input is misclassified.
AdditiveGaussianNoiseAttack Adds Gaussian noise to the input, gradually increasing

the standard deviation until the input is misclassified.
SaltAndPepperNoiseAttack Increases the amount of salt and pepper noise until the

input is misclassified.
BlendedUniformNoiseAttack Blends the input with a uniform noise input until it is

misclassified.
BoundaryAttackPlusPlus
GenAttack The GenAttack introduced in [R996613153a1e-1].
HopSkipJumpAttack A powerful adversarial attack that requires neither gra-

dients nor probabilities.

Other attacks

BinarizationRefinementAttack For models that preprocess their inputs by binarizing
the inputs, this attack can improve adversarials found
by other attacks.

PrecomputedAdversarialsAttack Attacks a model using precomputed adversarial candi-
dates.

InversionAttack Creates “negative images” by inverting the pixel values
according to [R57cf8375f1ff-1].

12.4. Other attacks 95

Foolbox Documentation, Release 2.4.0

96 Chapter 12. foolbox.attacks

CHAPTER 13

foolbox.adversarial

Provides a class that represents an adversarial example.

class foolbox.adversarial.Adversarial(model, criterion, unperturbed, orig-
inal_class, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None, verbose=False)

adversarial_class
The argmax of the model predictions for the best adversarial found so far.

None if no adversarial has been found.

backward_one(self, gradient, x=None, strict=True)
Interface to model.backward_one for attacks.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

Returns

gradient [numpy.ndarray] The gradient w.r.t the input.

See also:

gradient()

channel_axis(self, batch)
Interface to model.channel_axis for attacks.

Parameters

batch [bool] Controls whether the index of the axis for a batch of inputs (4 dimensions) or
a single input (3 dimensions) should be returned.

97

Foolbox Documentation, Release 2.4.0

distance
The distance of the adversarial input to the original input.

forward(self, inputs, greedy=False, strict=True, return_details=False)
Interface to model.forward for attacks.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the model.

greedy [bool] Whether the first adversarial should be returned.

strict [bool] Controls if the bounds for the pixel values should be checked.

forward_and_gradient(self, x, label=None, strict=True, return_details=False)
Interface to model.forward_and_gradient_one for attacks.

Parameters

x [numpy.ndarray] Multiple input with shape as expected by the model (with the batch di-
mension).

label [numpy.ndarray] Labels used to calculate the loss that is differentiated. Defaults to the
original label.

strict [bool] Controls if the bounds for the pixel values should be checked.

forward_and_gradient_one(self, x=None, label=None, strict=True, return_details=False)
Interface to model.forward_and_gradient_one for attacks.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension). Defaults to the original input.

label [int] Label used to calculate the loss that is differentiated. Defaults to the original
label.

strict [bool] Controls if the bounds for the pixel values should be checked.

forward_one(self, x, strict=True, return_details=False)
Interface to model.forward_one for attacks.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

strict [bool] Controls if the bounds for the pixel values should be checked.

gradient_one(self, x=None, label=None, strict=True)
Interface to model.gradient_one for attacks.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension). Defaults to the original input.

label [int] Label used to calculate the loss that is differentiated. Defaults to the original
label.

strict [bool] Controls if the bounds for the pixel values should be checked.

has_gradient(self)
Returns true if _backward and _forward_backward can be called by an attack, False otherwise.

98 Chapter 13. foolbox.adversarial

Foolbox Documentation, Release 2.4.0

normalized_distance(self, x)
Calculates the distance of a given input x to the original input.

Parameters

x [numpy.ndarray] The input x that should be compared to the original input.

Returns

Distance The distance between the given input and the original input.

original_class
The class of the original input (ground-truth, not model prediction).

output
The model predictions for the best adversarial found so far.

None if no adversarial has been found.

perturbed
The best adversarial example found so far.

reached_threshold(self)
Returns True if a threshold is given and the currently best adversarial distance is smaller than the threshold.

target_class
Interface to criterion.target_class for attacks.

unperturbed
The original input.

99

Foolbox Documentation, Release 2.4.0

100 Chapter 13. foolbox.adversarial

CHAPTER 14

foolbox.utils

foolbox.utils.softmax(logits)
Transforms predictions into probability values.

Parameters

logits [array_like] The logits predicted by the model.

Returns

numpy.ndarray Probability values corresponding to the logits.

foolbox.utils.crossentropy(label, logits)
Calculates the cross-entropy.

Parameters

logits [array_like] The logits predicted by the model.

label [int] The label describing the target distribution.

Returns

float The cross-entropy between softmax(logits) and onehot(label).

foolbox.utils.batch_crossentropy(label, logits)
Calculates the cross-entropy for a batch of logits.

Parameters

logits [array_like] The logits predicted by the model for a batch of inputs.

label [int] The label describing the target distribution.

Returns

np.ndarray The cross-entropy between softmax(logits[i]) and onehot(label) for all i.

foolbox.utils.binarize(x, values, threshold=None, included_in=’upper’)
Binarizes the values of x.

Parameters

101

Foolbox Documentation, Release 2.4.0

values [tuple of two floats] The lower and upper value to which the inputs are mapped.

threshold [float] The threshold; defaults to (values[0] + values[1]) / 2 if None.

included_in [str] Whether the threshold value itself belongs to the lower or upper interval.

foolbox.utils.imagenet_example(shape=(224, 224), data_format=’channels_last’, bounds=(0,
255))

Returns an example image and its imagenet class label.

Parameters

shape [list of integers] The shape of the returned image.

data_format [str] “channels_first” or “channels_last”

bounds [tuple] smallest and largest allowed pixel value

Returns

image [array_like] The example image.

label [int] The imagenet label associated with the image.

NOTE: This function is deprecated and will be removed in the future.

foolbox.utils.samples(dataset=’imagenet’, index=0, batchsize=1, shape=(224, 224),
data_format=’channels_last’, bounds=(0, 255))

Returns a batch of example images and the corresponding labels

Parameters

dataset [string] The data set to load (options: imagenet, mnist, cifar10, cifar100, fashionM-
NIST)

index [int] For each data set 20 example images exist. The returned batch contains the images
with index [index, index + 1, index + 2, . . .]

batchsize [int] Size of batch.

shape [list of integers] The shape of the returned image (only relevant for Imagenet).

data_format [str] “channels_first” or “channels_last”

bounds [tuple] smallest and largest allowed pixel value

Returns

images [array_like] The batch of example images

labels [array of int] The labels associated with the images.

foolbox.utils.onehot_like(a, index, value=1)
Creates an array like a, with all values set to 0 except one.

Parameters

a [array_like] The returned one-hot array will have the same shape and dtype as this array

index [int] The index that should be set to value

value [single value compatible with a.dtype] The value to set at the given index

Returns

numpy.ndarray One-hot array with the given value at the given location and zeros everywhere
else.

102 Chapter 14. foolbox.utils

CHAPTER 15

foolbox.v1.attacks

15.1 Gradient-based attacks

class foolbox.v1.attacks.GradientAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Perturbs the input with the gradient of the loss w.r.t. the input, gradually increasing the magnitude until the input
is misclassified.

Does not do anything if the model does not have a gradient.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_epsilon=1)
Perturbs the input with the gradient of the loss w.r.t. the input, gradually increasing the magnitude until
the input is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the gradient direction or num-
ber of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

class foolbox.v1.attacks.GradientSignAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

103

Foolbox Documentation, Release 2.4.0

Adds the sign of the gradient to the input, gradually increasing the magnitude until the input is misclassified.
This attack is often referred to as Fast Gradient Sign Method and was introduced in [Rd18b29d45b44-1].

Does not do anything if the model does not have a gradient.

References

[Rd18b29d45b44-1]

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_epsilon=1)
Adds the sign of the gradient to the input, gradually increasing the magnitude until the input is misclassi-
fied.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the direction of the sign of the
gradient or number of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

foolbox.v1.attacks.FGSM
alias of foolbox.v1.attacks.gradient.GradientSignAttack

class foolbox.v1.attacks.LinfinityBasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, dis-
tance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Basic Iterative Method introduced in [Rbd27454db950-1].

This attack is also known as Projected Gradient Descent (PGD) (without random start) or FGMS^k.

References

See also:

ProjectedGradientDescentAttack

[Rbd27454db950-1]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.05, iterations=10, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

104 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.v1.attacks.BasicIterativeMethod
alias of foolbox.v1.attacks.iterative_projected_gradient.
LinfinityBasicIterativeAttack

foolbox.v1.attacks.BIM
alias of foolbox.v1.attacks.iterative_projected_gradient.
LinfinityBasicIterativeAttack

class foolbox.v1.attacks.L1BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L1 distance.

See also:

LinfinityBasicIterativeAttack

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.05, iterations=10, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

15.1. Gradient-based attacks 105

Foolbox Documentation, Release 2.4.0

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.v1.attacks.L2BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L2 distance.

See also:

LinfinityBasicIterativeAttack

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.05, iterations=10, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.v1.attacks.ProjectedGradientDescentAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, dis-
tance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Projected Gradient Descent Attack introduced in [R37229719ede6-1] without random start.

106 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

When used without a random start, this attack is also known as Basic Iterative Method (BIM) or FGSM^k.

References

See also:

LinfinityBasicIterativeAttack and RandomStartProjectedGradientDescentAttack

[R37229719ede6-1]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.01, iterations=40, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.v1.attacks.ProjectedGradientDescent
alias of foolbox.v1.attacks.iterative_projected_gradient.
ProjectedGradientDescentAttack

foolbox.v1.attacks.PGD
alias of foolbox.v1.attacks.iterative_projected_gradient.
ProjectedGradientDescentAttack

class foolbox.v1.attacks.RandomStartProjectedGradientDescentAttack(model=None,
crite-
rion=<foolbox.criteria.Misclassification
object>,
dis-
tance=<class
’fool-
box.distances.MeanSquaredDistance’>,
thresh-
old=None)

15.1. Gradient-based attacks 107

Foolbox Documentation, Release 2.4.0

The Projected Gradient Descent Attack introduced in [R876f5a9eb8eb-1] with random start.

References

See also:

ProjectedGradientDescentAttack

[R876f5a9eb8eb-1]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.01, iterations=40, random_start=True, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.v1.attacks.RandomProjectedGradientDescent
alias of foolbox.v1.attacks.iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

foolbox.v1.attacks.RandomPGD
alias of foolbox.v1.attacks.iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

class foolbox.v1.attacks.AdamL1BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L1 distance using the Adam optimizer.

See also:

LinfinityBasicIterativeAttack

108 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.05, iterations=10, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.v1.attacks.AdamL2BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L2 distance using the Adam optimizer.

See also:

LinfinityBasicIterativeAttack

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.05, iterations=10, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

15.1. Gradient-based attacks 109

Foolbox Documentation, Release 2.4.0

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.v1.attacks.AdamProjectedGradientDescentAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, dis-
tance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Projected Gradient Descent Attack introduced in [R78a2267bf0c5-1], [R78a2267bf0c5-2] without random
start using the Adam optimizer.

When used without a random start, this attack is also known as Basic Iterative Method (BIM) or FGSM^k.

References

See also:

LinfinityBasicIterativeAttack and RandomStartProjectedGradientDescentAttack

[R78a2267bf0c5-1], [R78a2267bf0c5-2]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.01, iterations=40, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

110 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.v1.attacks.AdamProjectedGradientDescent
alias of foolbox.v1.attacks.iterative_projected_gradient.
AdamProjectedGradientDescentAttack

foolbox.v1.attacks.AdamPGD
alias of foolbox.v1.attacks.iterative_projected_gradient.
AdamProjectedGradientDescentAttack

class foolbox.v1.attacks.AdamRandomStartProjectedGradientDescentAttack(model=None,
cri-
te-
rion=<foolbox.criteria.Misclassification
ob-
ject>,
dis-
tance=<class
’fool-
box.distances.MeanSquaredDistance’>,
thresh-
old=None)

The Projected Gradient Descent Attack introduced in [Rb42f1f35d85c-1], [Rb42f1f35d85c-2] with random start
using the Adam optimizer.

References

See also:

ProjectedGradientDescentAttack

[Rb42f1f35d85c-1], [Rb42f1f35d85c-2]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.01, iterations=40, random_start=True, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

15.1. Gradient-based attacks 111

Foolbox Documentation, Release 2.4.0

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.v1.attacks.AdamRandomProjectedGradientDescent
alias of foolbox.v1.attacks.iterative_projected_gradient.
AdamRandomStartProjectedGradientDescentAttack

foolbox.v1.attacks.AdamRandomPGD
alias of foolbox.v1.attacks.iterative_projected_gradient.
AdamRandomStartProjectedGradientDescentAttack

class foolbox.v1.attacks.MomentumIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Momentum Iterative Method attack introduced in [R0c7c08fb6fc4-1]. It’s like the Basic Iterative Method
or Projected Gradient Descent except that it uses momentum.

References

[R0c7c08fb6fc4-1]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.06, iterations=10, decay_factor=1.0, random_start=False, return_early=True)

Momentum-based iterative gradient attack known as Momentum Iterative Method.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool] Whether to perform a binary search over epsilon and stepsize, keeping
their ratio constant and using their values to start the search. If False, hyperparameters
are not optimized. Can also be an integer, specifying the number of binary search steps
(default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

decay_factor [float] Decay factor used by the momentum term.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

112 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

foolbox.v1.attacks.MomentumIterativeMethod
alias of foolbox.v1.attacks.iterative_projected_gradient.
MomentumIterativeAttack

class foolbox.v1.attacks.LBFGSAttack(*args, **kwargs)
Uses L-BFGS-B to minimize the distance between the input and the adversarial as well as the cross-entropy
between the predictions for the adversarial and the the one-hot encoded target class.

If the criterion does not have a target class, a random class is chosen from the set of all classes except the original
one.

Notes

This implementation generalizes algorithm 1 in [R26cfbde4a2fc-1] to support other targeted criteria and other
distance measures.

References

[R26cfbde4a2fc-1]

__call__(self, input_or_adv, label=None, unpack=True, epsilon=1e-05, num_random_targets=0,
maxiter=150)

Uses L-BFGS-B to minimize the distance between the input and the adversarial as well as the cross-entropy
between the predictions for the adversarial and the the one-hot encoded target class.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilon [float] Epsilon of the binary search.

num_random_targets [int] Number of random target classes if no target class is given by
the criterion.

maxiter [int] Maximum number of iterations for L-BFGS-B.

__init__(self, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

name(self)
Returns a human readable name that uniquely identifies the attack with its hyperparameters.

Returns

str Human readable name that uniquely identifies the attack with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

15.1. Gradient-based attacks 113

Foolbox Documentation, Release 2.4.0

class foolbox.v1.attacks.DeepFoolAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Simple and close to optimal gradient-based adversarial attack.

Implementes DeepFool introduced in [R66d014f60cc6-1].

References

[R66d014f60cc6-1]

__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10, p=None)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.v1.attacks.NewtonFoolAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Implements the NewtonFool Attack.

The attack was introduced in [Rd3fe0126f08a-1].

References

[Rd3fe0126f08a-1]

__call__(self, input_or_adv, label=None, unpack=True, max_iter=100, eta=0.01)

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

max_iter [int] The maximum number of iterations.

eta [float] the eta coefficient

114 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

class foolbox.v1.attacks.DeepFoolL2Attack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.v1.attacks.DeepFoolLinfinityAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.v1.attacks.ADefAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Adversarial attack that distorts the image, i.e. changes the locations of pixels. The algorithm is described in
[Rd97cb6ce1fe8-1], a Repository with the original code can be found in [Rd97cb6ce1fe8-2].

References

[Rd97cb6ce1fe8-1], [Rd97cb6ce1fe8-2]

15.1. Gradient-based attacks 115

Foolbox Documentation, Release 2.4.0

__call__(self, input_or_adv, unpack=True, max_iter=100, max_norm=<Mock name=’mock.inf’
id=’140409874136760’>, label=None, smooth=1.0, subsample=10)

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

max_iter [int > 0] Maximum number of iterations (default max_iter = 100).

max_norm [float] Maximum l2 norm of vector field (default max_norm = numpy.inf).

smooth [float >= 0] Width of the Gaussian kernel used for smoothing. (default is smooth =
0 for no smoothing).

subsample [int >= 2] Limit on the number of the most likely classes that should be consid-
ered. A small value is usually sufficient and much faster. (default subsample = 10)

class foolbox.v1.attacks.SLSQPAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Uses SLSQP to minimize the distance between the input and the adversarial under the constraint that the input
is adversarial.

__call__(self, input_or_adv, label=None, unpack=True)
Uses SLSQP to minimize the distance between the input and the adversarial under the constraint that the
input is adversarial.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

class foolbox.v1.attacks.SaliencyMapAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Implements the Saliency Map Attack.

The attack was introduced in [Rbb0daa49069a-1].

References

[Rbb0daa49069a-1]

__call__(self, input_or_adv, label=None, unpack=True, max_iter=2000, num_random_targets=0,
fast=True, theta=0.1, max_perturbations_per_pixel=7)

Implements the Saliency Map Attack.

Parameters

116 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

max_iter [int] The maximum number of iterations to run.

num_random_targets [int] Number of random target classes if no target class is given by
the criterion.

fast [bool] Whether to use the fast saliency map calculation.

theta [float] perturbation per pixel relative to [min, max] range.

max_perturbations_per_pixel [int] Maximum number of times a pixel can be modified.

class foolbox.v1.attacks.IterativeGradientAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Like GradientAttack but with several steps for each epsilon.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, max_epsilon=1, steps=10)
Like GradientAttack but with several steps for each epsilon.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the gradient direction or num-
ber of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

steps [int] Number of iterations to run.

class foolbox.v1.attacks.IterativeGradientSignAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Like GradientSignAttack but with several steps for each epsilon.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, max_epsilon=1, steps=10)
Like GradientSignAttack but with several steps for each epsilon.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

15.1. Gradient-based attacks 117

Foolbox Documentation, Release 2.4.0

epsilons [int or Iterable[float]] Either Iterable of step sizes in the direction of the sign of the
gradient or number of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

steps [int] Number of iterations to run.

class foolbox.v1.attacks.CarliniWagnerL2Attack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The L2 version of the Carlini & Wagner attack.

This attack is described in [Red8697c8377c-1]. This implementation is based on the reference implementation
by Carlini [Red8697c8377c-2]. For bounds (0, 1), it differs from [Red8697c8377c-2] because we normalize
the squared L2 loss with the bounds.

References

[Red8697c8377c-1], [Red8697c8377c-2]

__call__(self, input_or_adv, label=None, unpack=True, binary_search_steps=5,
max_iterations=1000, confidence=0, learning_rate=0.005, initial_const=0.01,
abort_early=True)

The L2 version of the Carlini & Wagner attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search_steps [int] The number of steps for the binary search used to find the optimal
tradeoff-constant between distance and confidence.

max_iterations [int] The maximum number of iterations. Larger values are more accurate;
setting it too small will require a large learning rate and will produce poor results.

confidence [int or float] Confidence of adversarial examples: a higher value produces ad-
versarials that are further away, but more strongly classified as adversarial.

learning_rate [float] The learning rate for the attack algorithm. Smaller values produce
better results but take longer to converge.

initial_const [float] The initial tradeoff-constant to use to tune the relative importance of
distance and confidence. If binary_search_steps is large, the initial constant is not impor-
tant.

abort_early [bool] If True, Adam will be aborted if the loss hasn’t decreased for some time
(a tenth of max_iterations).

static best_other_class(logits, exclude)
Returns the index of the largest logit, ignoring the class that is passed as exclude.

classmethod loss_function(const, a, x, logits, reconstructed_original, confidence, min_, max_)
Returns the loss and the gradient of the loss w.r.t. x, assuming that logits = model(x).

118 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

class foolbox.v1.attacks.EADAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, threshold=None)

Gradient based attack which uses an elastic-net regularization [1]. This implementation is based on the attacks
description [1] and its reference implementation [2].

References

[R1c90a35cf078-1], [R1c90a35cf078-2]

__call__(self, input_or_adv, label=None, unpack=True, binary_search_steps=5,
max_iterations=1000, confidence=0, initial_learning_rate=0.01, regularization=0.01,
initial_const=0.01, abort_early=True)

Gradient based attack which sues an elastic-net regularization.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search_steps [int] The number of steps for the binary search used to find the optimal
tradeoff-constant between distance and confidence.

max_iterations [int] The maximum number of iterations. Larger values are more accurate;
setting it too small will require a large learning rate and will produce poor results.

confidence [int or float] Confidence of adversarial examples: a higher value produces ad-
versarials that are further away, but more strongly classified as adversarial.

initial_learning_rate [float] The initial learning rate for the attack algorithm. Smaller val-
ues produce better results but take longer to converge. During the attack a square-root
decay in the learning rate is performed.

initial_const [float] The initial tradeoff-constant to use to tune the relative importance of
distance and confidence. If binary_search_steps is large, the initial constant is not impor-
tant.

regularization [float] The L1 regularization parameter (also called beta). A value of 0 cor-
responds to the attacks.CarliniWagnerL2Attack attack.

abort_early [bool] If True, Adam will be aborted if the loss hasn’t decreased for some time
(a tenth of max_iterations).

static best_other_class(logits, exclude)
Returns the index of the largest logit, ignoring the class that is passed as exclude.

classmethod loss_function(const, a, x, logits, original, confidence, min_, max_)
Returns the loss and the gradient of the loss w.r.t. x, assuming that logits = model(x).

classmethod project_shrinkage_thresholding(z, x0, regularization, min_, max_)
Performs the element-wise projected shrinkage-thresholding operation

15.1. Gradient-based attacks 119

Foolbox Documentation, Release 2.4.0

class foolbox.v1.attacks.DecoupledDirectionNormL2Attack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, dis-
tance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Decoupled Direction and Norm L2 adversarial attack from [R1326043d948c-1].

References

[R1326043d948c-1]

__call__(self, input_or_adv, label=None, unpack=True, steps=100, gamma=0.05, initial_norm=1,
quantize=True, levels=256)

The Decoupled Direction and Norm L2 adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Number of steps for the optimization.

gamma [float, optional] Factor by which the norm will be modified. new_norm = norm * (1
+ or - gamma).

init_norm [float, optional] Initial value for the norm.

quantize [bool, optional] If True, the returned adversarials will have quantized values to the
specified number of levels.

levels [int, optional] Number of levels to use for quantization (e.g. 256 for 8 bit images).

class foolbox.v1.attacks.SparseFoolAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

A geometry-inspired and fast attack for computing sparse adversarial perturbations.

Implements SparseFool introduced in [Rc99dbf830026-1]. The official code is provided in [Rc99dbf830026-2].

References

[Rc99dbf830026-1], [Rc99dbf830026-2]

__call__(self, input_or_adv, label=None, unpack=True, steps=30, lambda_=1.0, subsample=10)
A geometry-inspired and fast attack for computing sparse adversarial perturbations.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

120 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

lambda_ [float] Pushes the approximated decision boundary deeper into the classification
region of the fooling class.

subsample [int] Limit on the number of the most likely classes that should be considered
when approximating the decision boundary. A small value is usually sufficient and much
faster.

classmethod boundary_approximation_deepfool(a, initial_point, subsample, label,
lambda_, steps=100)

Approximates the decision boundary as an affine hyperplane. The approximation is done using a slightly
modified version of the unconstrained DeepFool.

Parameters

a [numpy.ndarray or Adversarial] The original, unperturbed input as a numpy.ndarray
or an Adversarial instance.

initial_point [numpy.ndarray] The initial point that we want to move towards the decision
boundary of the fooling class.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

lambda_ [float] Specifies the factor by which the boundary point is pushed further into the
classification region of the fooling class.

steps [int] Maximum number of steps to perform.

classmethod l1_linear_solver(initial_point, boundary_point, normal, min_, max_)
Computes the L1 solution (perturbation) to the linearized problem. It corresponds to algorithm 1.

Parameters

initial_point [numpy.ndarray] The initial point for which we seek the L1 solution.

boundary_point [numpy.ndarray] The point that lies on the decision boundary (or an over-
shooted version).

normal [numpy.ndarray] The normal of the decision boundary at the boundary point.

min_ [numpy.ndarray] The minimum allowed input values.

max_ [int] The maximum allowed input values.

15.2 Score-based attacks

class foolbox.v1.attacks.SinglePixelAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Perturbs just a single pixel and sets it to the min or max.

__call__(self, input_or_adv, label=None, unpack=True, max_pixels=1000)
Perturbs just a single pixel and sets it to the min or max.

15.2. Score-based attacks 121

Foolbox Documentation, Release 2.4.0

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

max_pixels [int] Maximum number of pixels to try.

class foolbox.v1.attacks.LocalSearchAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

A black-box attack based on the idea of greedy local search.

This implementation is based on the algorithm in [R88dca1be8879-1].

References

[R88dca1be8879-1]

__call__(self, input_or_adv, label=None, unpack=True, r=1.5, p=10.0, d=5, t=5, R=150)
A black-box attack based on the idea of greedy local search.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

r [float] Perturbation parameter that controls the cyclic perturbation; must be in [0, 2]

p [float] Perturbation parameter that controls the pixel sensitivity estimation

d [int] The half side length of the neighborhood square

t [int] The number of pixels perturbed at each round

R [int] An upper bound on the number of iterations

class foolbox.v1.attacks.ApproximateLBFGSAttack(*args, **kwargs)
Same as LBFGSAttack with approximate_gradient set to True.

__init__(self, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

122 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

15.3 Decision-based attacks

class foolbox.v1.attacks.BoundaryAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

A powerful adversarial attack that requires neither gradients nor probabilities.

This is the reference implementation for the attack introduced in [R8ddeb6b8743a-1].

Notes

This implementation provides several advanced features:

• ability to continue previous attacks by passing an instance of the Adversarial class

• ability to pass an explicit starting point; especially to initialize a targeted attack

• ability to pass an alternative attack used for initialization

• fine-grained control over logging

• ability to specify the batch size

• optional automatic batch size tuning

• optional multithreading for random number generation

• optional multithreading for candidate point generation

References

[R8ddeb6b8743a-1]

__call__(self, input_or_adv, label=None, unpack=True, iterations=5000, max_directions=25, start-
ing_point=None, initialization_attack=None, log_every_n_steps=1, spherical_step=0.01,
source_step=0.01, step_adaptation=1.5, batch_size=1, tune_batch_size=True,
threaded_rnd=True, threaded_gen=True, alternative_generator=False, inter-
nal_dtype=<Mock name=’mock.float64’ id=’140409874389032’>, verbose=False)

Applies the Boundary Attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

iterations [int] Maximum number of iterations to run. Might converge and stop before that.

max_directions [int] Maximum number of trials per ieration.

starting_point [numpy.ndarray] Adversarial input to use as a starting point, in particular for
targeted attacks.

15.3. Decision-based attacks 123

Foolbox Documentation, Release 2.4.0

initialization_attack [Attack] Attack to use to find a starting point. Defaults to Blende-
dUniformNoiseAttack.

log_every_n_steps [int] Determines verbositity of the logging.

spherical_step [float] Initial step size for the orthogonal (spherical) step.

source_step [float] Initial step size for the step towards the target.

step_adaptation [float] Factor by which the step sizes are multiplied or divided.

batch_size [int] Batch size or initial batch size if tune_batch_size is True

tune_batch_size [bool] Whether or not the batch size should be automatically chosen be-
tween 1 and max_directions.

threaded_rnd [bool] Whether the random number generation should be multithreaded.

threaded_gen [bool] Whether the candidate point generation should be multithreaded.

alternative_generator: bool Whether an alternative implemenation of the candidate gener-
ator should be used.

internal_dtype [np.float32 or np.float64] Higher precision might be slower but is numeri-
cally more stable.

verbose [bool] Controls verbosity of the attack.

class foolbox.v1.attacks.SpatialAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Adversarially chosen rotations and translations [1].

This implementation is based on the reference implementation by Madry et al.: https://github.com/MadryLab/
adversarial_spatial

References

[R0887fcfca8b0-1]

__call__(self, input_or_adv, label=None, unpack=True, do_rotations=True, do_translations=True,
x_shift_limits=(-5, 5), y_shift_limits=(-5, 5), angular_limits=(-5, 5), granularity=10, ran-
dom_sampling=False, abort_early=True)

Adversarially chosen rotations and translations.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

do_rotations [bool] If False no rotations will be applied to the image.

do_translations [bool] If False no translations will be applied to the image.

x_shift_limits [int or (int, int)] Limits for horizontal translations in pixels. If one integer is
provided the limits will be (-x_shift_limits, x_shift_limits).

124 Chapter 15. foolbox.v1.attacks

https://github.com/MadryLab/adversarial_spatial
https://github.com/MadryLab/adversarial_spatial

Foolbox Documentation, Release 2.4.0

y_shift_limits [int or (int, int)] Limits for vertical translations in pixels. If one integer is
provided the limits will be (-y_shift_limits, y_shift_limits).

angular_limits [int or (int, int)] Limits for rotations in degrees. If one integer is provided
the limits will be [-angular_limits, angular_limits].

granularity [int] Density of sampling within limits for each dimension.

random_sampling [bool] If True we sample translations/rotations randomly within limits,
otherwise we use a regular grid.

abort_early [bool] If True, the attack stops as soon as it finds an adversarial.

class foolbox.v1.attacks.PointwiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Starts with an adversarial and performs a binary search between the adversarial and the original for each dimen-
sion of the input individually.

References

[Ra4541122885f-1]

__call__(self, input_or_adv, label=None, unpack=True, starting_point=None, initializa-
tion_attack=None)

Starts with an adversarial and performs a binary search between the adversarial and the original for each
dimension of the input individually.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

starting_point [numpy.ndarray] Adversarial input to use as a starting point, in particular for
targeted attacks.

initialization_attack [Attack] Attack to use to find a starting point. Defaults to SaltAnd-
PepperNoiseAttack.

class foolbox.v1.attacks.GaussianBlurAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Blurs the input until it is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)
Blurs the input until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

15.3. Decision-based attacks 125

Foolbox Documentation, Release 2.4.0

label [int] The reference label of the original input. Must be passed if input is a
numpy.ndarray, must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of standard deviations of the Gaussian blur or
number of standard deviations between 0 and 1 that should be tried.

class foolbox.v1.attacks.ContrastReductionAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Reduces the contrast of the input until it is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)
Reduces the contrast of the input until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of contrast levels or number of contrast levels
between 1 and 0 that should be tried. Epsilons are one minus the contrast level.

class foolbox.v1.attacks.AdditiveUniformNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Adds uniform noise to the input, gradually increasing the standard deviation until the input is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)
Adds uniform or Gaussian noise to the input, gradually increasing the standard deviation until the input is
misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of noise levels or number of noise levels be-
tween 0 and 1 that should be tried.

__class__
alias of abc.ABCMeta

__delattr__(self, name, /)
Implement delattr(self, name).

__dir__()
default dir() implementation

126 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

__eq__(self, value, /)
Return self==value.

__format__()
default object formatter

__ge__(self, value, /)
Return self>=value.

__getattribute__(self, name, /)
Return getattr(self, name).

__gt__(self, value, /)
Return self>value.

__hash__(self, /)
Return hash(self).

__init__(self, model=None, criterion=<foolbox.criteria.Misclassification object at 0x7fb3b5afcac8>,
distance=<class ’foolbox.distances.MeanSquaredDistance’>, threshold=None)

Initialize self. See help(type(self)) for accurate signature.

__le__(self, value, /)
Return self<=value.

__lt__(self, value, /)
Return self<value.

__ne__(self, value, /)
Return self!=value.

__new__(*args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__(self, /)
Return repr(self).

__setattr__(self, name, value, /)
Implement setattr(self, name, value).

__sizeof__()
size of object in memory, in bytes

__str__(self, /)
Return str(self).

__subclasshook__()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

name(self)
Returns a human readable name that uniquely identifies the attack with its hyperparameters.

15.3. Decision-based attacks 127

Foolbox Documentation, Release 2.4.0

Returns

str Human readable name that uniquely identifies the attack with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.v1.attacks.AdditiveGaussianNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Adds Gaussian noise to the input, gradually increasing the standard deviation until the input is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)
Adds uniform or Gaussian noise to the input, gradually increasing the standard deviation until the input is
misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of noise levels or number of noise levels be-
tween 0 and 1 that should be tried.

__class__
alias of abc.ABCMeta

__delattr__(self, name, /)
Implement delattr(self, name).

__dir__()
default dir() implementation

__eq__(self, value, /)
Return self==value.

__format__()
default object formatter

__ge__(self, value, /)
Return self>=value.

__getattribute__(self, name, /)
Return getattr(self, name).

__gt__(self, value, /)
Return self>value.

__hash__(self, /)
Return hash(self).

__init__(self, model=None, criterion=<foolbox.criteria.Misclassification object at 0x7fb3b5afcac8>,
distance=<class ’foolbox.distances.MeanSquaredDistance’>, threshold=None)

Initialize self. See help(type(self)) for accurate signature.

128 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

__le__(self, value, /)
Return self<=value.

__lt__(self, value, /)
Return self<value.

__ne__(self, value, /)
Return self!=value.

__new__(*args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__(self, /)
Return repr(self).

__setattr__(self, name, value, /)
Implement setattr(self, name, value).

__sizeof__()
size of object in memory, in bytes

__str__(self, /)
Return str(self).

__subclasshook__()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

name(self)
Returns a human readable name that uniquely identifies the attack with its hyperparameters.

Returns

str Human readable name that uniquely identifies the attack with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.v1.attacks.SaltAndPepperNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Increases the amount of salt and pepper noise until the input is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, repetitions=10)
Increases the amount of salt and pepper noise until the input is misclassified.

15.3. Decision-based attacks 129

Foolbox Documentation, Release 2.4.0

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int] Number of steps to try between probability 0 and 1.

repetitions [int] Specifies how often the attack will be repeated.

class foolbox.v1.attacks.BlendedUniformNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Blends the input with a uniform noise input until it is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_directions=1000)
Blends the input with a uniform noise input until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of blending steps or number of blending steps
between 0 and 1 that should be tried.

max_directions [int] Maximum number of random inputs to try.

class foolbox.v1.attacks.HopSkipJumpAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

A powerful adversarial attack that requires neither gradients nor probabilities.

Notes

• ability to switch between two types of distances: MSE and Linf.

• ability to continue previous attacks by passing an instance of the Adversarial class

• ability to pass an explicit starting point; especially to initialize a targeted attack

• ability to pass an alternative attack used for initialization

• ability to specify the batch size

HopSkipJumpAttack was originally proposed by Chen, Jordan and Wainwright. It is a decision-based attack
that requires access to output labels of a model alone. The implementation in Foolbox is based on Boundary
Attack.

130 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

References

[Ra00bb00e9b96-1]

__call__(self, input_or_adv, label=None, unpack=True, iterations=64, initial_num_evals=100,
max_num_evals=10000, stepsize_search=’geometric_progression’, gamma=1.0,
starting_point=None, batch_size=256, internal_dtype=<Mock name=’mock.float64’
id=’140409874389032’>, log_every_n_steps=1, verbose=False)

Applies HopSkipJumpAttack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified input.
If it is a numpy array, label must be passed as well. If it is an Adversarial instance,
label must not be passed.

label [int] The reference label of the original input. Must be passed if input is a numpy array,
must not be passed if input is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

iterations [int] Number of iterations to run.

initial_num_evals: int Initial number of evaluations for gradient estimation. Larger ini-
tial_num_evals increases time efficiency, but may decrease query efficiency.

max_num_evals: int Maximum number of evaluations for gradient estimation.

stepsize_search: str How to search for stepsize; choices are ‘geometric_progression’,
‘grid_search’. ‘geometric progression’ initializes the stepsize by ||x_t - x||_p /
sqrt(iteration), and keep decreasing by half until reaching the target side of the bound-
ary. ‘grid_search’ chooses the optimal epsilon over a grid, in the scale of ||x_t - x||_p.

gamma: float

The binary search threshold theta is gamma / d^1.5 for l2 attack and gamma / d^2 for
linf attack.

starting_point [numpy.ndarray] Adversarial input to use as a starting point, required for
targeted attacks.

batch_size [int] Batch size for model prediction.

internal_dtype [np.float32 or np.float64] Higher precision might be slower but is numeri-
cally more stable.

log_every_n_steps [int] Determines verbositity of the logging.

verbose [bool] Controls verbosity of the attack.

approximate_gradient(self, decision_function, sample, num_evals, delta)
Gradient direction estimation

attack(self, a, iterations)

iterations [int] Maximum number of iterations to run.

binary_search_batch(self, unperturbed, perturbed_inputs, decision_function)
Binary search to approach the boundary.

geometric_progression_for_stepsize(self, x, update, dist, decision_function, cur-
rent_iteration)

Geometric progression to search for stepsize. Keep decreasing stepsize by half until reaching the desired
side of the boundary.

15.3. Decision-based attacks 131

Foolbox Documentation, Release 2.4.0

project(self, unperturbed, perturbed_inputs, alphas)
Projection onto given l2 / linf balls in a batch.

select_delta(self, dist_post_update, current_iteration)
Choose the delta at the scale of distance between x and perturbed sample.

15.4 Other attacks

class foolbox.v1.attacks.BinarizationRefinementAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, dis-
tance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

For models that preprocess their inputs by binarizing the inputs, this attack can improve adversarials found by
other attacks. It does os by utilizing information about the binarization and mapping values to the corresponding
value in the clean input or to the right side of the threshold.

__call__(self, input_or_adv, label=None, unpack=True, starting_point=None, threshold=None, in-
cluded_in=’upper’)

For models that preprocess their inputs by binarizing the inputs, this attack can improve adversarials found
by other attacks. It does os by utilizing information about the binarization and mapping values to the
corresponding value in the clean input or to the right side of the threshold.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

starting_point [numpy.ndarray] Adversarial input to use as a starting point.

threshold [float] The treshold used by the models binarization. If none, defaults to
(model.bounds()[1] - model.bounds()[0]) / 2.

included_in [str] Whether the threshold value itself belongs to the lower or upper interval.

class foolbox.v1.attacks.PrecomputedAdversarialsAttack(inputs, outputs, *args,
**kwargs)

Attacks a model using precomputed adversarial candidates.

Parameters

inputs [numpy.ndarray] The original inputs that will be expected by this attack.

outputs [numpy.ndarray] The adversarial candidates corresponding to the inputs.

*args [positional args] Poistional args passed to the Attack base class.

**kwargs [keyword args] Keyword args passed to the Attack base class.

__call__(self, input_or_adv, label=None, unpack=True)
Attacks a model using precomputed adversarial candidates.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

132 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

__init__(self, inputs, outputs, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

Gradient-based attacks

GradientAttack Perturbs the input with the gradient of the loss w.r.t.
GradientSignAttack Adds the sign of the gradient to the input, gradually in-

creasing the magnitude until the input is misclassified.
FGSM alias of foolbox.v1.attacks.gradient.

GradientSignAttack
LinfinityBasicIterativeAttack The Basic Iterative Method introduced in

[Rbd27454db950-1].
BasicIterativeMethod alias of foolbox.v1.attacks.

iterative_projected_gradient.
LinfinityBasicIterativeAttack

BIM alias of foolbox.v1.attacks.
iterative_projected_gradient.
LinfinityBasicIterativeAttack

L1BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L1 distance.

L2BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L2 distance.

ProjectedGradientDescentAttack The Projected Gradient Descent Attack introduced in
[R37229719ede6-1] without random start.

ProjectedGradientDescent alias of foolbox.v1.attacks.
iterative_projected_gradient.
ProjectedGradientDescentAttack

PGD alias of foolbox.v1.attacks.
iterative_projected_gradient.
ProjectedGradientDescentAttack

RandomStartProjectedGradientDescentAttackThe Projected Gradient Descent Attack introduced in
[R876f5a9eb8eb-1] with random start.

RandomProjectedGradientDescent alias of foolbox.v1.attacks.
iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

RandomPGD alias of foolbox.v1.attacks.
iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

AdamL1BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L1 distance using the Adam optimizer.

AdamL2BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L2 distance using the Adam optimizer.

AdamProjectedGradientDescentAttack The Projected Gradient Descent Attack introduced in
[R78a2267bf0c5-1], [R78a2267bf0c5-2] without ran-
dom start using the Adam optimizer.

Continued on next page

15.4. Other attacks 133

Foolbox Documentation, Release 2.4.0

Table 1 – continued from previous page
AdamProjectedGradientDescent alias of foolbox.v1.attacks.

iterative_projected_gradient.
AdamProjectedGradientDescentAttack

AdamPGD alias of foolbox.v1.attacks.
iterative_projected_gradient.
AdamProjectedGradientDescentAttack

AdamRandomStartProjectedGradientDescentAttackThe Projected Gradient Descent Attack introduced in
[Rb42f1f35d85c-1], [Rb42f1f35d85c-2] with random
start using the Adam optimizer.

AdamRandomProjectedGradientDescent alias of foolbox.v1.attacks.
iterative_projected_gradient.
AdamRandomStartProjectedGradientDescentAttack

AdamRandomPGD alias of foolbox.v1.attacks.
iterative_projected_gradient.
AdamRandomStartProjectedGradientDescentAttack

MomentumIterativeAttack The Momentum Iterative Method attack introduced in
[R0c7c08fb6fc4-1].

MomentumIterativeMethod alias of foolbox.v1.attacks.
iterative_projected_gradient.
MomentumIterativeAttack

LBFGSAttack Uses L-BFGS-B to minimize the distance between the
input and the adversarial as well as the cross-entropy
between the predictions for the adversarial and the the
one-hot encoded target class.

DeepFoolAttack Simple and close to optimal gradient-based adversarial
attack.

NewtonFoolAttack Implements the NewtonFool Attack.
DeepFoolL2Attack
DeepFoolLinfinityAttack
ADefAttack Adversarial attack that distorts the image, i.e.
SLSQPAttack Uses SLSQP to minimize the distance between the input

and the adversarial under the constraint that the input is
adversarial.

SaliencyMapAttack Implements the Saliency Map Attack.
IterativeGradientAttack Like GradientAttack but with several steps for each ep-

silon.
IterativeGradientSignAttack Like GradientSignAttack but with several steps for each

epsilon.
CarliniWagnerL2Attack The L2 version of the Carlini & Wagner attack.
EADAttack Gradient based attack which uses an elastic-net regular-

ization [1].
DecoupledDirectionNormL2Attack The Decoupled Direction and Norm L2 adversarial at-

tack from [R1326043d948c-1].
SparseFoolAttack A geometry-inspired and fast attack for computing

sparse adversarial perturbations.

Score-based attacks

SinglePixelAttack Perturbs just a single pixel and sets it to the min or max.
Continued on next page

134 Chapter 15. foolbox.v1.attacks

Foolbox Documentation, Release 2.4.0

Table 2 – continued from previous page
LocalSearchAttack A black-box attack based on the idea of greedy local

search.
ApproximateLBFGSAttack Same as LBFGSAttack with approximate_gradient

set to True.

Decision-based attacks

BoundaryAttack A powerful adversarial attack that requires neither gra-
dients nor probabilities.

SpatialAttack Adversarially chosen rotations and translations [1].
PointwiseAttack Starts with an adversarial and performs a binary search

between the adversarial and the original for each dimen-
sion of the input individually.

GaussianBlurAttack Blurs the input until it is misclassified.
ContrastReductionAttack Reduces the contrast of the input until it is misclassified.
AdditiveUniformNoiseAttack Adds uniform noise to the input, gradually increasing

the standard deviation until the input is misclassified.
AdditiveGaussianNoiseAttack Adds Gaussian noise to the input, gradually increasing

the standard deviation until the input is misclassified.
SaltAndPepperNoiseAttack Increases the amount of salt and pepper noise until the

input is misclassified.
BlendedUniformNoiseAttack Blends the input with a uniform noise input until it is

misclassified.
BoundaryAttackPlusPlus
HopSkipJumpAttack A powerful adversarial attack that requires neither gra-

dients nor probabilities.

Other attacks

BinarizationRefinementAttack For models that preprocess their inputs by binarizing
the inputs, this attack can improve adversarials found
by other attacks.

PrecomputedAdversarialsAttack Attacks a model using precomputed adversarial candi-
dates.

15.4. Other attacks 135

Foolbox Documentation, Release 2.4.0

136 Chapter 15. foolbox.v1.attacks

CHAPTER 16

foolbox.v1.adversarial

Provides a class that represents an adversarial example.

class foolbox.v1.adversarial.Adversarial(model, criterion, unperturbed, orig-
inal_class, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None, verbose=False)

Defines an adversarial that should be found and stores the result.

The Adversarial class represents a single adversarial example for a given model, criterion and reference
input. It can be passed to an adversarial attack to find the actual adversarial perturbation.

Parameters

model [a Model instance] The model that should be fooled by the adversarial.

criterion [a Criterion instance] The criterion that determines which inputs are adversarial.

unperturbed [a numpy.ndarray] The unperturbed input to which the adversarial input
should be as close as possible.

original_class [int] The ground-truth label of the unperturbed input.

distance [a Distance class] The measure used to quantify how close inputs are.

threshold [float or Distance] If not None, the attack will stop as soon as the adversarial per-
turbation has a size smaller than this threshold. Can be an instance of the Distance class
passed to the distance argument, or a float assumed to have the same unit as the the given
distance. If None, the attack will simply minimize the distance as good as possible. Note
that the threshold only influences early stopping of the attack; the returned adversarial does
not necessarily have smaller perturbation size than this threshold; the reached_threshold()
method can be used to check if the threshold has been reached.

adversarial_class
The argmax of the model predictions for the best adversarial found so far.

None if no adversarial has been found.

137

Foolbox Documentation, Release 2.4.0

backward_one(self, gradient, x=None, strict=True)
Interface to model.backward_one for attacks.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

Returns

gradient [numpy.ndarray] The gradient w.r.t the input.

See also:

gradient()

channel_axis(self, batch)
Interface to model.channel_axis for attacks.

Parameters

batch [bool] Controls whether the index of the axis for a batch of inputs (4 dimensions) or
a single input (3 dimensions) should be returned.

distance
The distance of the adversarial input to the original input.

forward(self, inputs, greedy=False, strict=True, return_details=False)
Interface to model.forward for attacks.

Parameters

inputs [numpy.ndarray] Batch of inputs with shape as expected by the model.

greedy [bool] Whether the first adversarial should be returned.

strict [bool] Controls if the bounds for the pixel values should be checked.

forward_and_gradient(self, x, label=None, strict=True, return_details=False)
Interface to model.forward_and_gradient_one for attacks.

Parameters

x [numpy.ndarray] Multiple input with shape as expected by the model (with the batch di-
mension).

label [numpy.ndarray] Labels used to calculate the loss that is differentiated. Defaults to the
original label.

strict [bool] Controls if the bounds for the pixel values should be checked.

forward_and_gradient_one(self, x=None, label=None, strict=True, return_details=False)
Interface to model.forward_and_gradient_one for attacks.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension). Defaults to the original input.

label [int] Label used to calculate the loss that is differentiated. Defaults to the original
label.

strict [bool] Controls if the bounds for the pixel values should be checked.

138 Chapter 16. foolbox.v1.adversarial

Foolbox Documentation, Release 2.4.0

forward_one(self, x, strict=True, return_details=False)
Interface to model.forward_one for attacks.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension).

strict [bool] Controls if the bounds for the pixel values should be checked.

gradient_one(self, x=None, label=None, strict=True)
Interface to model.gradient_one for attacks.

Parameters

x [numpy.ndarray] Single input with shape as expected by the model (without the batch
dimension). Defaults to the original input.

label [int] Label used to calculate the loss that is differentiated. Defaults to the original
label.

strict [bool] Controls if the bounds for the pixel values should be checked.

has_gradient(self)
Returns true if _backward and _forward_backward can be called by an attack, False otherwise.

normalized_distance(self, x)
Calculates the distance of a given input x to the original input.

Parameters

x [numpy.ndarray] The input x that should be compared to the original input.

Returns

Distance The distance between the given input and the original input.

original_class
The class of the original input (ground-truth, not model prediction).

output
The model predictions for the best adversarial found so far.

None if no adversarial has been found.

perturbed
The best adversarial example found so far.

reached_threshold(self)
Returns True if a threshold is given and the currently best adversarial distance is smaller than the threshold.

target_class
Interface to criterion.target_class for attacks.

unperturbed
The original input.

139

Foolbox Documentation, Release 2.4.0

140 Chapter 16. foolbox.v1.adversarial

CHAPTER 17

Indices and tables

• genindex

• modindex

• search

141

Foolbox Documentation, Release 2.4.0

142 Chapter 17. Indices and tables

Bibliography

[R75f1c0e135b2-1] Roland S. Zimmermann, “Comment on ‘Adv-BNN: Improved Adversarial Defense through Ro-
bust Bayesian Neural Network’”, https://arxiv.org/abs/1907.00895

[R20d0064ee4c9-1] Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, “Explaining and Harnessing Adversarial
Examples”, https://arxiv.org/abs/1412.6572

[R37dbc8f24aee-1] Alexey Kurakin, Ian Goodfellow, Samy Bengio, “Adversarial examples in the physical world”,
https://arxiv.org/abs/1607.02533

[R367e8e10528a-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[Re6066bc39e14-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[Re2d4f39a0205-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[Re2d4f39a0205-2] Nicholas Carlini, David Wagner: “Towards Evaluating the Robustness of Neural Networks”,
https://arxiv.org/abs/1608.04644

[R3210aa339085-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[R3210aa339085-2] Nicholas Carlini, David Wagner: “Towards Evaluating the Robustness of Neural Networks”,
https://arxiv.org/abs/1608.04644

[R86d363e1fb2f-1] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, Jianguo Li, “Boost-
ing Adversarial Attacks with Momentum”, https://arxiv.org/abs/1710.06081

[Rb4dd02640756-1] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard, “DeepFool: a simple and
accurate method to fool deep neural networks”, https://arxiv.org/abs/1511.04599

[R6a972939b320-1] Uyeong Jang et al., “Objective Metrics and Gradient Descent Algorithms for Adversarial Exam-
ples in Machine Learning”, https://dl.acm.org/citation.cfm?id=3134635

[Rf241e6d2664d-1] Rima Alaifari, Giovanni S. Alberti, and Tandri Gauksson: “ADef: an Iterative Algorithm to
Construct Adversarial Deformations”, https://arxiv.org/abs/1804.07729

[Rf241e6d2664d-2] https://gitlab.math.ethz.ch/tandrig/ADef/tree/master

143

https://arxiv.org/abs/1907.00895
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1710.06081
https://arxiv.org/abs/1511.04599
https://dl.acm.org/citation.cfm?id=3134635
https://arxiv.org/abs/1804.07729
https://gitlab.math.ethz.ch/tandrig/ADef/tree/master

Foolbox Documentation, Release 2.4.0

[R08e06ca693ba-1] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, Ananthram
Swami, “The Limitations of Deep Learning in Adversarial Settings”, https://arxiv.org/abs/1511.07528

[Rc2cb572b91c5-1] Nicholas Carlini, David Wagner: “Towards Evaluating the Robustness of Neural Networks”,
https://arxiv.org/abs/1608.04644

[Rc2cb572b91c5-2] https://github.com/carlini/nn_robust_attacks

[Rf0e4124daa63-1] Pin-Yu Chen (*), Yash Sharma (*), Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, “EAD: Elastic-Net
Attacks to Deep Neural Networks via Adversarial Examples”, https://arxiv.org/abs/1709.04114

[Rf0e4124daa63-2] Pin-Yu Chen (*), Yash Sharma (*), Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, “Reference Im-
plementation of ‘EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples’”,
https://github.com/ysharma1126/EAD_Attack/blob/master/en_attack.py

[R0e9d4da0ab48-1] Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert Sabourin, Eric
Granger, “Decoupling Direction and Norm for Efficient Gradient-Based L2 Adversarial Attacks and De-
fenses”, https://arxiv.org/abs/1811.09600

[R0591d14da1c3-1] Florian Tramèr, Dan Boneh, “Adversarial Training and Robustness for Multiple Perturbations”,
https://arxiv.org/abs/1904.13000

[Rc6516d158ac2-1] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, Shin Ishii, “Distributional
Smoothing with Virtual Adversarial Training”, https://arxiv.org/abs/1507.00677

[Rb320cee6998a-1] Nina Narodytska, Shiva Prasad Kasiviswanathan, “Simple Black-Box Adversarial Perturbations
for Deep Networks”, https://arxiv.org/abs/1612.06299

[Re72ca268aa55-1] Wieland Brendel (*), Jonas Rauber (*), Matthias Bethge, “Decision-Based Adversarial Attacks:
Reliable Attacks Against Black-Box Machine Learning Models”, https://arxiv.org/abs/1712.04248

[Rdffd25498f9d-1] Logan Engstrom*, Brandon Tran*, Dimitris Tsipras*, Ludwig Schmidt, Aleksander Mądry: “A
Rotation and a Translation Suffice: Fooling CNNs with Simple Transformations”, http://arxiv.org/abs/
1712.02779

[R739f80a24875-1] L. Schott, J. Rauber, M. Bethge, W. Brendel: “Towards the first adversarially robust neural net-
work model on MNIST”, ICLR (2019) https://arxiv.org/abs/1805.09190

[Rc6ce1ef324cb-1] https://arxiv.org/abs/1904.02144

[R996613153a1e-1] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh, Mani Sri-
vastava, “GenAttack: Practical Black-box Attacks with Gradient-Free Optimization”, https://arxiv.org/
abs/1805.11090

[R57cf8375f1ff-1] Hossein Hosseini, Baicen Xiao, Mayoore Jaiswal, Radha Poovendran, “On the Limitation of Con-
volutional Neural Networks in Recognizing Negative Images”, https://arxiv.org/abs/1703.06857

[Rd18b29d45b44-1] Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, “Explaining and Harnessing Adversarial
Examples”, https://arxiv.org/abs/1412.6572

[Rbd27454db950-1] Alexey Kurakin, Ian Goodfellow, Samy Bengio, “Adversarial examples in the physical world”,
https://arxiv.org/abs/1607.02533

[R37229719ede6-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[R876f5a9eb8eb-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[R78a2267bf0c5-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[R78a2267bf0c5-2] Nicholas Carlini, David Wagner: “Towards Evaluating the Robustness of Neural Networks”,
https://arxiv.org/abs/1608.04644

144 Bibliography

https://arxiv.org/abs/1511.07528
https://arxiv.org/abs/1608.04644
https://github.com/carlini/nn_robust_attacks
https://arxiv.org/abs/1709.04114
https://github.com/ysharma1126/EAD_Attack/blob/master/en_attack.py
https://arxiv.org/abs/1811.09600
https://arxiv.org/abs/1904.13000
https://arxiv.org/abs/1507.00677
https://arxiv.org/abs/1612.06299
https://arxiv.org/abs/1712.04248
http://arxiv.org/abs/1712.02779
http://arxiv.org/abs/1712.02779
https://arxiv.org/abs/1805.09190
https://arxiv.org/abs/1904.02144
https://arxiv.org/abs/1805.11090
https://arxiv.org/abs/1805.11090
https://arxiv.org/abs/1703.06857
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1608.04644

Foolbox Documentation, Release 2.4.0

[Rb42f1f35d85c-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[Rb42f1f35d85c-2] Nicholas Carlini, David Wagner: “Towards Evaluating the Robustness of Neural Networks”,
https://arxiv.org/abs/1608.04644

[R0c7c08fb6fc4-1] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, Jianguo Li, “Boost-
ing Adversarial Attacks with Momentum”, https://arxiv.org/abs/1710.06081

[R26cfbde4a2fc-1] https://arxiv.org/abs/1510.05328

[R66d014f60cc6-1] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard, “DeepFool: a simple and
accurate method to fool deep neural networks”, https://arxiv.org/abs/1511.04599

[Rd3fe0126f08a-1] Uyeong Jang et al., “Objective Metrics and Gradient Descent Algorithms for Adversarial Exam-
ples in Machine Learning”, https://dl.acm.org/citation.cfm?id=3134635

[Rd97cb6ce1fe8-1] Rima Alaifari, Giovanni S. Alberti, and Tandri Gauksson: “ADef: an Iterative Algorithm to Con-
struct Adversarial Deformations”, https://arxiv.org/abs/1804.07729

[Rd97cb6ce1fe8-2] https://gitlab.math.ethz.ch/tandrig/ADef/tree/master

[Rbb0daa49069a-1] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, Ananthram
Swami, “The Limitations of Deep Learning in Adversarial Settings”, https://arxiv.org/abs/1511.07528

[Red8697c8377c-1] Nicholas Carlini, David Wagner: “Towards Evaluating the Robustness of Neural Networks”,
https://arxiv.org/abs/1608.04644

[Red8697c8377c-2] https://github.com/carlini/nn_robust_attacks

[R1c90a35cf078-1] Pin-Yu Chen (*), Yash Sharma (*), Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, “EAD: Elastic-Net
Attacks to Deep Neural Networks via Adversarial Examples”, https://arxiv.org/abs/1709.04114

[R1c90a35cf078-2] Pin-Yu Chen (*), Yash Sharma (*), Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, “Reference Im-
plementation of ‘EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples’”,
https://github.com/ysharma1126/EAD_Attack/blob/master/en_attack.py

[R1326043d948c-1] Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert Sabourin, Eric
Granger, “Decoupling Direction and Norm for Efficient Gradient-Based L2 Adversarial Attacks and De-
fenses”, https://arxiv.org/abs/1811.09600

[Rc99dbf830026-1] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, “SparseFool: a few pixels
make a big difference”, https://arxiv.org/abs/1811.02248

[Rc99dbf830026-2] https://github.com/LTS4/SparseFool

[R88dca1be8879-1] Nina Narodytska, Shiva Prasad Kasiviswanathan, “Simple Black-Box Adversarial Perturbations
for Deep Networks”, https://arxiv.org/abs/1612.06299

[R8ddeb6b8743a-1] Wieland Brendel (*), Jonas Rauber (*), Matthias Bethge, “Decision-Based Adversarial Attacks:
Reliable Attacks Against Black-Box Machine Learning Models”, https://arxiv.org/abs/1712.04248

[R0887fcfca8b0-1] Logan Engstrom*, Brandon Tran*, Dimitris Tsipras*, Ludwig Schmidt, Aleksander Mądry: “A
Rotation and a Translation Suffice: Fooling CNNs with Simple Transformations”, http://arxiv.org/abs/
1712.02779

[Ra4541122885f-1] L. Schott, J. Rauber, M. Bethge, W. Brendel: “Towards the first adversarially robust neural net-
work model on MNIST”, ICLR (2019) https://arxiv.org/abs/1805.09190

[Ra00bb00e9b96-1] https://arxiv.org/abs/1904.02144

Bibliography 145

https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1710.06081
https://arxiv.org/abs/1510.05328
https://arxiv.org/abs/1511.04599
https://dl.acm.org/citation.cfm?id=3134635
https://arxiv.org/abs/1804.07729
https://gitlab.math.ethz.ch/tandrig/ADef/tree/master
https://arxiv.org/abs/1511.07528
https://arxiv.org/abs/1608.04644
https://github.com/carlini/nn_robust_attacks
https://arxiv.org/abs/1709.04114
https://github.com/ysharma1126/EAD_Attack/blob/master/en_attack.py
https://arxiv.org/abs/1811.09600
https://arxiv.org/abs/1811.02248
https://github.com/LTS4/SparseFool
https://arxiv.org/abs/1612.06299
https://arxiv.org/abs/1712.04248
http://arxiv.org/abs/1712.02779
http://arxiv.org/abs/1712.02779
https://arxiv.org/abs/1805.09190
https://arxiv.org/abs/1904.02144

Foolbox Documentation, Release 2.4.0

146 Bibliography

Python Module Index

f
foolbox.adversarial, 97
foolbox.attacks, 63
foolbox.criteria, 53
foolbox.distances, 61
foolbox.models, 21
foolbox.utils, 101
foolbox.v1.adversarial, 137
foolbox.v1.attacks, 103
foolbox.zoo, 59

147

Foolbox Documentation, Release 2.4.0

148 Python Module Index

Index

Symbols
__call__() (foolbox.attacks.AdditiveGaussianNoiseAttack

method), 86
__call__() (foolbox.attacks.AdditiveUniformNoiseAttack

method), 85
__call__() (foolbox.v1.attacks.ADefAttack method),

115
__call__() (foolbox.v1.attacks.AdamL1BasicIterativeAttack

method), 108
__call__() (foolbox.v1.attacks.AdamL2BasicIterativeAttack

method), 109
__call__() (foolbox.v1.attacks.AdamProjectedGradientDescentAttack

method), 110
__call__() (foolbox.v1.attacks.AdamRandomStartProjectedGradientDescentAttack

method), 111
__call__() (foolbox.v1.attacks.AdditiveGaussianNoiseAttack

method), 128
__call__() (foolbox.v1.attacks.AdditiveUniformNoiseAttack

method), 126
__call__() (foolbox.v1.attacks.BinarizationRefinementAttack

method), 132
__call__() (foolbox.v1.attacks.BlendedUniformNoiseAttack

method), 130
__call__() (foolbox.v1.attacks.BoundaryAttack

method), 123
__call__() (foolbox.v1.attacks.CarliniWagnerL2Attack

method), 118
__call__() (foolbox.v1.attacks.ContrastReductionAttack

method), 126
__call__() (foolbox.v1.attacks.DecoupledDirectionNormL2Attack

method), 120
__call__() (foolbox.v1.attacks.DeepFoolAttack

method), 114
__call__() (foolbox.v1.attacks.DeepFoolL2Attack

method), 115
__call__() (foolbox.v1.attacks.DeepFoolLinfinityAttack

method), 115
__call__() (foolbox.v1.attacks.EADAttack method),

119

__call__() (foolbox.v1.attacks.GaussianBlurAttack
method), 125

__call__() (foolbox.v1.attacks.GradientAttack
method), 103

__call__() (foolbox.v1.attacks.GradientSignAttack
method), 104

__call__() (foolbox.v1.attacks.HopSkipJumpAttack
method), 131

__call__() (foolbox.v1.attacks.IterativeGradientAttack
method), 117

__call__() (foolbox.v1.attacks.IterativeGradientSignAttack
method), 117

__call__() (foolbox.v1.attacks.L1BasicIterativeAttack
method), 105

__call__() (foolbox.v1.attacks.L2BasicIterativeAttack
method), 106

__call__() (foolbox.v1.attacks.LBFGSAttack
method), 113

__call__() (foolbox.v1.attacks.LinfinityBasicIterativeAttack
method), 104

__call__() (foolbox.v1.attacks.LocalSearchAttack
method), 122

__call__() (foolbox.v1.attacks.MomentumIterativeAttack
method), 112

__call__() (foolbox.v1.attacks.NewtonFoolAttack
method), 114

__call__() (foolbox.v1.attacks.PointwiseAttack
method), 125

__call__() (foolbox.v1.attacks.PrecomputedAdversarialsAttack
method), 132

__call__() (foolbox.v1.attacks.ProjectedGradientDescentAttack
method), 107

__call__() (foolbox.v1.attacks.RandomStartProjectedGradientDescentAttack
method), 108

__call__() (foolbox.v1.attacks.SLSQPAttack
method), 116

__call__() (foolbox.v1.attacks.SaliencyMapAttack
method), 116

__call__() (foolbox.v1.attacks.SaltAndPepperNoiseAttack
method), 129

149

Foolbox Documentation, Release 2.4.0

__call__() (foolbox.v1.attacks.SinglePixelAttack
method), 121

__call__() (foolbox.v1.attacks.SparseFoolAttack
method), 120

__call__() (foolbox.v1.attacks.SpatialAttack
method), 124

__class__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 86

__class__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__class__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 128

__class__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 126

__delattr__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 86

__delattr__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__delattr__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 128

__delattr__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 126

__dir__() (foolbox.attacks.AdditiveGaussianNoiseAttack
method), 87

__dir__() (foolbox.attacks.AdditiveUniformNoiseAttack
method), 85

__dir__() (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
method), 128

__dir__() (foolbox.v1.attacks.AdditiveUniformNoiseAttack
method), 126

__eq__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__eq__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__eq__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 128

__eq__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 126

__format__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 87

__format__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 85

__format__() (fool-
box.v1.attacks.AdditiveGaussianNoiseAttack
method), 128

__format__() (fool-
box.v1.attacks.AdditiveUniformNoiseAttack
method), 127

__ge__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__ge__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__ge__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 128

__ge__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__getattribute__ (fool-
box.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__getattribute__ (fool-
box.attacks.AdditiveUniformNoiseAttack
attribute), 85

__getattribute__ (fool-
box.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 128

__getattribute__ (fool-
box.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__gt__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__gt__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__gt__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 128

__gt__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__hash__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__hash__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__hash__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 128

__hash__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__init__() (foolbox.attacks.AdditiveGaussianNoiseAttack
method), 87

__init__() (foolbox.attacks.AdditiveUniformNoiseAttack
method), 85

__init__() (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
method), 128

__init__() (foolbox.v1.attacks.AdditiveUniformNoiseAttack
method), 127

__init__() (foolbox.v1.attacks.ApproximateLBFGSAttack
method), 122

__init__() (foolbox.v1.attacks.LBFGSAttack
method), 113

__init__() (foolbox.v1.attacks.PrecomputedAdversarialsAttack
method), 133

__le__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__le__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__le__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 129

__le__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

150 Index

Foolbox Documentation, Release 2.4.0

__lt__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__lt__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__lt__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 129

__lt__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__ne__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__ne__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__ne__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 129

__ne__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__new__() (foolbox.attacks.AdditiveGaussianNoiseAttack
method), 87

__new__() (foolbox.attacks.AdditiveUniformNoiseAttack
method), 85

__new__() (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
method), 129

__new__() (foolbox.v1.attacks.AdditiveUniformNoiseAttack
method), 127

__reduce__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 87

__reduce__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 85

__reduce__() (fool-
box.v1.attacks.AdditiveGaussianNoiseAttack
method), 129

__reduce__() (fool-
box.v1.attacks.AdditiveUniformNoiseAttack
method), 127

__reduce_ex__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 87

__reduce_ex__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 85

__reduce_ex__() (fool-
box.v1.attacks.AdditiveGaussianNoiseAttack
method), 129

__reduce_ex__() (fool-
box.v1.attacks.AdditiveUniformNoiseAttack
method), 127

__repr__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__repr__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__repr__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 129

__repr__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__setattr__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__setattr__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 85

__setattr__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 129

__setattr__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__sizeof__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 87

__sizeof__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 86

__sizeof__() (fool-
box.v1.attacks.AdditiveGaussianNoiseAttack
method), 129

__sizeof__() (fool-
box.v1.attacks.AdditiveUniformNoiseAttack
method), 127

__str__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 87

__str__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 86

__str__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 129

__str__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

__subclasshook__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 87

__subclasshook__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 86

__subclasshook__() (fool-
box.v1.attacks.AdditiveGaussianNoiseAttack
method), 129

__subclasshook__() (fool-
box.v1.attacks.AdditiveUniformNoiseAttack
method), 127

__weakref__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 88

__weakref__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 86

__weakref__ (foolbox.v1.attacks.AdditiveGaussianNoiseAttack
attribute), 129

__weakref__ (foolbox.v1.attacks.AdditiveUniformNoiseAttack
attribute), 127

A
AdamL1BasicIterativeAttack (class in fool-

box.attacks), 68

Index 151

Foolbox Documentation, Release 2.4.0

AdamL1BasicIterativeAttack (class in fool-
box.v1.attacks), 108

AdamL2BasicIterativeAttack (class in fool-
box.attacks), 69

AdamL2BasicIterativeAttack (class in fool-
box.v1.attacks), 109

AdamPGD (in module foolbox.attacks), 71
AdamPGD (in module foolbox.v1.attacks), 111
AdamProjectedGradientDescent (in module

foolbox.attacks), 71
AdamProjectedGradientDescent (in module

foolbox.v1.attacks), 111
AdamProjectedGradientDescentAttack (class

in foolbox.attacks), 70
AdamProjectedGradientDescentAttack (class

in foolbox.v1.attacks), 110
AdamRandomPGD (in module foolbox.attacks), 72
AdamRandomPGD (in module foolbox.v1.attacks), 112
AdamRandomProjectedGradientDescent (in

module foolbox.attacks), 72
AdamRandomProjectedGradientDescent (in

module foolbox.v1.attacks), 112
AdamRandomStartProjectedGradientDescentAttack

(class in foolbox.attacks), 71
AdamRandomStartProjectedGradientDescentAttack

(class in foolbox.v1.attacks), 111
AdditiveGaussianNoiseAttack (class in fool-

box.attacks), 86
AdditiveGaussianNoiseAttack (class in fool-

box.v1.attacks), 128
AdditiveUniformNoiseAttack (class in fool-

box.attacks), 84
AdditiveUniformNoiseAttack (class in fool-

box.v1.attacks), 126
ADefAttack (class in foolbox.attacks), 74
ADefAttack (class in foolbox.v1.attacks), 115
Adversarial (class in foolbox.adversarial), 97
Adversarial (class in foolbox.v1.adversarial), 137
adversarial_class (fool-

box.adversarial.Adversarial attribute), 97
adversarial_class (fool-

box.v1.adversarial.Adversarial attribute),
137

approximate_gradient() (fool-
box.attacks.HopSkipJumpAttack method),
89

approximate_gradient() (fool-
box.v1.attacks.HopSkipJumpAttack method),
131

ApproximateLBFGSAttack (class in fool-
box.v1.attacks), 122

as_generator() (fool-
box.attacks.AdamL1BasicIterativeAttack
method), 68

as_generator() (fool-
box.attacks.AdamL2BasicIterativeAttack
method), 69

as_generator() (fool-
box.attacks.AdamProjectedGradientDescentAttack
method), 70

as_generator() (fool-
box.attacks.AdamRandomStartProjectedGradientDescentAttack
method), 71

as_generator() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 88

as_generator() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 86

as_generator() (foolbox.attacks.ADefAttack
method), 74

as_generator() (fool-
box.attacks.BinarizationRefinementAttack
method), 91

as_generator() (fool-
box.attacks.BlendedUniformNoiseAttack
method), 89

as_generator() (foolbox.attacks.BoundaryAttack
method), 82

as_generator() (fool-
box.attacks.CarliniWagnerL2Attack method),
76

as_generator() (fool-
box.attacks.ContrastReductionAttack method),
84

as_generator() (fool-
box.attacks.DecoupledDirectionNormL2Attack
method), 78

as_generator() (foolbox.attacks.DeepFoolAttack
method), 73

as_generator() (foolbox.attacks.DeepFoolL2Attack
method), 74

as_generator() (fool-
box.attacks.DeepFoolLinfinityAttack method),
74

as_generator() (foolbox.attacks.EADAttack
method), 77

as_generator() (fool-
box.attacks.GaussianBlurAttack method),
84

as_generator() (foolbox.attacks.GenAttack
method), 91

as_generator() (foolbox.attacks.GradientAttack
method), 63

as_generator() (fool-
box.attacks.GradientSignAttack method),
64

as_generator() (fool-

152 Index

Foolbox Documentation, Release 2.4.0

box.attacks.HopSkipJumpAttack method),
89

as_generator() (foolbox.attacks.InversionAttack
method), 92

as_generator() (fool-
box.attacks.IterativeGradientAttack method),
75

as_generator() (fool-
box.attacks.IterativeGradientSignAttack
method), 76

as_generator() (fool-
box.attacks.L1BasicIterativeAttack method),
65

as_generator() (fool-
box.attacks.L2BasicIterativeAttack method),
66

as_generator() (fool-
box.attacks.LinfinityBasicIterativeAttack
method), 64

as_generator() (foolbox.attacks.LocalSearchAttack
method), 81

as_generator() (fool-
box.attacks.MomentumIterativeAttack method),
72

as_generator() (foolbox.attacks.NewtonFoolAttack
method), 73

as_generator() (foolbox.attacks.PointwiseAttack
method), 83

as_generator() (fool-
box.attacks.PrecomputedAdversarialsAttack
method), 92

as_generator() (fool-
box.attacks.ProjectedGradientDescentAttack
method), 67

as_generator() (fool-
box.attacks.RandomStartProjectedGradientDescentAttack
method), 68

as_generator() (fool-
box.attacks.SaliencyMapAttack method),
75

as_generator() (fool-
box.attacks.SaltAndPepperNoiseAttack
method), 88

as_generator() (foolbox.attacks.SinglePixelAttack
method), 80

as_generator() (fool-
box.attacks.SparseL1BasicIterativeAttack
method), 79

as_generator() (foolbox.attacks.SpatialAttack
method), 83

as_generator() (fool-
box.attacks.VirtualAdversarialAttack method),
80

attack() (foolbox.attacks.HopSkipJumpAttack

method), 90
attack() (foolbox.v1.attacks.HopSkipJumpAttack

method), 131

B
backward() (foolbox.models.CaffeModel method), 42
backward() (foolbox.models.CompositeModel

method), 48
backward() (foolbox.models.DifferentiableModel

method), 23
backward() (foolbox.models.DifferentiableModelWrapper

method), 45
backward() (foolbox.models.EnsembleAveragedModel

method), 50
backward() (foolbox.models.JAXModel method), 32
backward() (foolbox.models.KerasModel method), 34
backward() (foolbox.models.ModelWithEstimatedGradients

method), 46
backward() (foolbox.models.MXNetGluonModel

method), 41
backward() (foolbox.models.MXNetModel method),

38
backward() (foolbox.models.PyTorchModel method),

30
backward() (foolbox.models.TensorFlowEagerModel

method), 28
backward() (foolbox.models.TensorFlowModel

method), 25
backward() (foolbox.models.TheanoModel method),

36
backward_one() (foolbox.adversarial.Adversarial

method), 97
backward_one() (fool-

box.models.DifferentiableModel method),
23

backward_one() (foolbox.v1.adversarial.Adversarial
method), 137

BasicIterativeMethod (in module fool-
box.attacks), 65

BasicIterativeMethod (in module fool-
box.v1.attacks), 105

batch_crossentropy() (in module foolbox.utils),
101

best_other_class() (fool-
box.attacks.CarliniWagnerL2Attack static
method), 77

best_other_class() (foolbox.attacks.EADAttack
static method), 78

best_other_class() (fool-
box.v1.attacks.CarliniWagnerL2Attack static
method), 118

best_other_class() (fool-
box.v1.attacks.EADAttack static method),
119

Index 153

Foolbox Documentation, Release 2.4.0

BIM (in module foolbox.attacks), 65
BIM (in module foolbox.v1.attacks), 105
BinarizationRefinementAttack (class in fool-

box.attacks), 91
BinarizationRefinementAttack (class in fool-

box.v1.attacks), 132
binarize() (in module foolbox.utils), 101
binary_search_batch() (fool-

box.attacks.HopSkipJumpAttack method),
90

binary_search_batch() (fool-
box.v1.attacks.HopSkipJumpAttack method),
131

BlendedUniformNoiseAttack (class in fool-
box.attacks), 88

BlendedUniformNoiseAttack (class in fool-
box.v1.attacks), 130

boundary_approximation_deepfool() (fool-
box.v1.attacks.SparseFoolAttack class method),
121

BoundaryAttack (class in foolbox.attacks), 81
BoundaryAttack (class in foolbox.v1.attacks), 123

C
CaffeModel (class in foolbox.models), 42
CarliniWagnerL2Attack (class in foolbox.attacks),

76
CarliniWagnerL2Attack (class in fool-

box.v1.attacks), 118
channel_axis() (foolbox.adversarial.Adversarial

method), 97
channel_axis() (foolbox.v1.adversarial.Adversarial

method), 138
CompositeModel (class in foolbox.models), 48
ConfidentMisclassification (class in fool-

box.criteria), 55
ContrastReductionAttack (class in fool-

box.attacks), 84
ContrastReductionAttack (class in fool-

box.v1.attacks), 126
Criterion (class in foolbox.criteria), 54
crossentropy() (in module foolbox.utils), 101

D
DecoupledDirectionNormL2Attack (class in

foolbox.attacks), 78
DecoupledDirectionNormL2Attack (class in

foolbox.v1.attacks), 119
DeepFoolAttack (class in foolbox.attacks), 73
DeepFoolAttack (class in foolbox.v1.attacks), 113
DeepFoolL2Attack (class in foolbox.attacks), 74
DeepFoolL2Attack (class in foolbox.v1.attacks), 114
DeepFoolLinfinityAttack (class in fool-

box.attacks), 74

DeepFoolLinfinityAttack (class in fool-
box.v1.attacks), 115

DifferentiableModel (class in foolbox.models), 23
DifferentiableModelWrapper (class in fool-

box.models), 45
Distance (class in foolbox.distances), 62
distance (foolbox.adversarial.Adversarial attribute),

97
distance (foolbox.v1.adversarial.Adversarial at-

tribute), 138

E
EADAttack (class in foolbox.attacks), 77
EADAttack (class in foolbox.v1.attacks), 118
EnsembleAveragedModel (class in foolbox.models),

50

F
fetch_weights() (in module foolbox.zoo), 60
FGSM (in module foolbox.attacks), 64
FGSM (in module foolbox.v1.attacks), 104
foolbox.adversarial (module), 97
foolbox.attacks (module), 63
foolbox.criteria (module), 53
foolbox.distances (module), 61
foolbox.models (module), 21
foolbox.utils (module), 101
foolbox.v1.adversarial (module), 137
foolbox.v1.attacks (module), 103
foolbox.zoo (module), 59
forward() (foolbox.adversarial.Adversarial method),

98
forward() (foolbox.models.CaffeModel method), 43
forward() (foolbox.models.CompositeModel method),

49
forward() (foolbox.models.EnsembleAveragedModel

method), 51
forward() (foolbox.models.JAXModel method), 32
forward() (foolbox.models.KerasModel method), 34
forward() (foolbox.models.Model method), 22
forward() (foolbox.models.ModelWrapper method),

44
forward() (foolbox.models.MXNetGluonModel

method), 41
forward() (foolbox.models.MXNetModel method), 39
forward() (foolbox.models.PyTorchModel method),

30
forward() (foolbox.models.TensorFlowEagerModel

method), 28
forward() (foolbox.models.TensorFlowModel

method), 26
forward() (foolbox.models.TheanoModel method), 36
forward() (foolbox.v1.adversarial.Adversarial

method), 138

154 Index

Foolbox Documentation, Release 2.4.0

forward_and_gradient() (fool-
box.adversarial.Adversarial method), 98

forward_and_gradient() (fool-
box.models.CaffeModel method), 43

forward_and_gradient() (fool-
box.models.CompositeModel method), 49

forward_and_gradient() (fool-
box.models.DifferentiableModel method),
23

forward_and_gradient() (fool-
box.models.DifferentiableModelWrapper
method), 45

forward_and_gradient() (fool-
box.models.EnsembleAveragedModel method),
51

forward_and_gradient() (fool-
box.models.JAXModel method), 33

forward_and_gradient() (fool-
box.models.KerasModel method), 34

forward_and_gradient() (fool-
box.models.ModelWithEstimatedGradients
method), 47

forward_and_gradient() (fool-
box.models.MXNetGluonModel method),
41

forward_and_gradient() (fool-
box.models.MXNetModel method), 39

forward_and_gradient() (fool-
box.models.PyTorchModel method), 30

forward_and_gradient() (fool-
box.models.TensorFlowEagerModel method),
28

forward_and_gradient() (fool-
box.models.TensorFlowModel method),
26

forward_and_gradient() (fool-
box.models.TheanoModel method), 36

forward_and_gradient() (fool-
box.v1.adversarial.Adversarial method),
138

forward_and_gradient_one() (fool-
box.adversarial.Adversarial method), 98

forward_and_gradient_one() (fool-
box.models.CaffeModel method), 43

forward_and_gradient_one() (fool-
box.models.CompositeModel method), 49

forward_and_gradient_one() (fool-
box.models.DifferentiableModel method),
24

forward_and_gradient_one() (fool-
box.models.DifferentiableModelWrapper
method), 45

forward_and_gradient_one() (fool-
box.models.EnsembleAveragedModel method),

51
forward_and_gradient_one() (fool-

box.models.KerasModel method), 35
forward_and_gradient_one() (fool-

box.models.ModelWithEstimatedGradients
method), 47

forward_and_gradient_one() (fool-
box.models.MXNetGluonModel method),
41

forward_and_gradient_one() (fool-
box.models.MXNetModel method), 39

forward_and_gradient_one() (fool-
box.models.PyTorchModel method), 31

forward_and_gradient_one() (fool-
box.models.TensorFlowEagerModel method),
29

forward_and_gradient_one() (fool-
box.models.TensorFlowModel method),
26

forward_and_gradient_one() (fool-
box.models.TheanoModel method), 37

forward_and_gradient_one() (fool-
box.v1.adversarial.Adversarial method),
138

forward_one() (foolbox.adversarial.Adversarial
method), 98

forward_one() (foolbox.models.Model method), 22
forward_one() (foolbox.v1.adversarial.Adversarial

method), 138
from_keras() (foolbox.models.TensorFlowModel

class method), 26

G
GaussianBlurAttack (class in foolbox.attacks), 84
GaussianBlurAttack (class in foolbox.v1.attacks),

125
GenAttack (class in foolbox.attacks), 90
geometric_progression_for_stepsize()

(foolbox.attacks.HopSkipJumpAttack method),
90

geometric_progression_for_stepsize()
(foolbox.v1.attacks.HopSkipJumpAttack
method), 131

get_model() (in module foolbox.zoo), 59
gradient() (foolbox.models.CaffeModel method), 44
gradient() (foolbox.models.CompositeModel

method), 50
gradient() (foolbox.models.DifferentiableModel

method), 24
gradient() (foolbox.models.DifferentiableModelWrapper

method), 46
gradient() (foolbox.models.EnsembleAveragedModel

method), 52
gradient() (foolbox.models.JAXModel method), 33

Index 155

Foolbox Documentation, Release 2.4.0

gradient() (foolbox.models.KerasModel method), 35
gradient() (foolbox.models.ModelWithEstimatedGradients

method), 47
gradient() (foolbox.models.MXNetGluonModel

method), 42
gradient() (foolbox.models.MXNetModel method),

40
gradient() (foolbox.models.PyTorchModel method),

31
gradient() (foolbox.models.TensorFlowEagerModel

method), 29
gradient() (foolbox.models.TensorFlowModel

method), 27
gradient() (foolbox.models.TheanoModel method),

37
gradient_one() (foolbox.adversarial.Adversarial

method), 98
gradient_one() (fool-

box.models.DifferentiableModel method),
25

gradient_one() (fool-
box.models.ModelWithEstimatedGradients
method), 48

gradient_one() (foolbox.v1.adversarial.Adversarial
method), 139

GradientAttack (class in foolbox.attacks), 63
GradientAttack (class in foolbox.v1.attacks), 103
GradientSignAttack (class in foolbox.attacks), 63
GradientSignAttack (class in foolbox.v1.attacks),

103

H
has_gradient() (foolbox.adversarial.Adversarial

method), 98
has_gradient() (foolbox.v1.adversarial.Adversarial

method), 139
HopSkipJumpAttack (class in foolbox.attacks), 89
HopSkipJumpAttack (class in foolbox.v1.attacks),

130

I
imagenet_example() (in module foolbox.utils), 102
InversionAttack (class in foolbox.attacks), 92
is_adversarial() (fool-

box.criteria.ConfidentMisclassification
method), 55

is_adversarial() (foolbox.criteria.Criterion
method), 54

is_adversarial() (fool-
box.criteria.Misclassification method), 55

is_adversarial() (fool-
box.criteria.OriginalClassProbability method),
57

is_adversarial() (foolbox.criteria.TargetClass
method), 57

is_adversarial() (fool-
box.criteria.TargetClassProbability method),
58

is_adversarial() (fool-
box.criteria.TopKMisclassification method),
56

IterativeGradientAttack (class in fool-
box.attacks), 75

IterativeGradientAttack (class in fool-
box.v1.attacks), 117

IterativeGradientSignAttack (class in fool-
box.attacks), 76

IterativeGradientSignAttack (class in fool-
box.v1.attacks), 117

J
JAXModel (class in foolbox.models), 32

K
KerasModel (class in foolbox.models), 33

L
L0 (class in foolbox.distances), 62
l1_linear_solver() (fool-

box.v1.attacks.SparseFoolAttack class method),
121

L1BasicIterativeAttack (class in fool-
box.attacks), 65

L1BasicIterativeAttack (class in fool-
box.v1.attacks), 105

L2BasicIterativeAttack (class in fool-
box.attacks), 66

L2BasicIterativeAttack (class in fool-
box.v1.attacks), 106

LasagneModel (class in foolbox.models), 38
LBFGSAttack (class in foolbox.v1.attacks), 113
Linf (in module foolbox.distances), 62
Linfinity (class in foolbox.distances), 62
LinfinityBasicIterativeAttack (class in fool-

box.attacks), 64
LinfinityBasicIterativeAttack (class in fool-

box.v1.attacks), 104
LocalSearchAttack (class in foolbox.attacks), 80
LocalSearchAttack (class in foolbox.v1.attacks),

122
loss_function() (fool-

box.attacks.CarliniWagnerL2Attack class
method), 77

loss_function() (foolbox.attacks.EADAttack class
method), 78

156 Index

Foolbox Documentation, Release 2.4.0

loss_function() (fool-
box.v1.attacks.CarliniWagnerL2Attack class
method), 118

loss_function() (foolbox.v1.attacks.EADAttack
class method), 119

M
MAE (in module foolbox.distances), 62
MeanAbsoluteDistance (class in fool-

box.distances), 62
MeanSquaredDistance (class in foolbox.distances),

62
Misclassification (class in foolbox.criteria), 54
Model (class in foolbox.models), 22
ModelWithEstimatedGradients (class in fool-

box.models), 46
ModelWithoutGradients (class in foolbox.models),

46
ModelWrapper (class in foolbox.models), 44
MomentumIterativeAttack (class in fool-

box.attacks), 72
MomentumIterativeAttack (class in fool-

box.v1.attacks), 112
MomentumIterativeMethod (in module fool-

box.attacks), 72
MomentumIterativeMethod (in module fool-

box.v1.attacks), 112
MSE (in module foolbox.distances), 62
MXNetGluonModel (class in foolbox.models), 40
MXNetModel (class in foolbox.models), 38

N
name() (foolbox.attacks.AdditiveGaussianNoiseAttack

method), 88
name() (foolbox.attacks.AdditiveUniformNoiseAttack

method), 86
name() (foolbox.criteria.ConfidentMisclassification

method), 55
name() (foolbox.criteria.Criterion method), 54
name() (foolbox.criteria.Misclassification method), 55
name() (foolbox.criteria.OriginalClassProbability

method), 57
name() (foolbox.criteria.TargetClass method), 57
name() (foolbox.criteria.TargetClassProbability

method), 58
name() (foolbox.criteria.TopKMisclassification

method), 56
name() (foolbox.v1.attacks.AdditiveGaussianNoiseAttack

method), 129
name() (foolbox.v1.attacks.AdditiveUniformNoiseAttack

method), 127
name() (foolbox.v1.attacks.LBFGSAttack method), 113
NewtonFoolAttack (class in foolbox.attacks), 73
NewtonFoolAttack (class in foolbox.v1.attacks), 114

normalized_distance() (fool-
box.adversarial.Adversarial method), 98

normalized_distance() (fool-
box.v1.adversarial.Adversarial method),
139

num_classes() (foolbox.models.CaffeModel
method), 44

num_classes() (foolbox.models.CompositeModel
method), 50

num_classes() (foolbox.models.JAXModel method),
33

num_classes() (foolbox.models.KerasModel
method), 35

num_classes() (foolbox.models.Model method), 23
num_classes() (foolbox.models.ModelWrapper

method), 44
num_classes() (foolbox.models.MXNetGluonModel

method), 42
num_classes() (foolbox.models.MXNetModel

method), 40
num_classes() (foolbox.models.PyTorchModel

method), 31
num_classes() (fool-

box.models.TensorFlowEagerModel method),
29

num_classes() (foolbox.models.TensorFlowModel
method), 27

num_classes() (foolbox.models.TheanoModel
method), 37

O
onehot_like() (in module foolbox.utils), 102
original_class (foolbox.adversarial.Adversarial

attribute), 99
original_class (foolbox.v1.adversarial.Adversarial

attribute), 139
OriginalClassProbability (class in fool-

box.criteria), 57
output (foolbox.adversarial.Adversarial attribute), 99
output (foolbox.v1.adversarial.Adversarial attribute),

139

P
perturbed (foolbox.adversarial.Adversarial attribute),

99
perturbed (foolbox.v1.adversarial.Adversarial at-

tribute), 139
PGD (in module foolbox.attacks), 67
PGD (in module foolbox.v1.attacks), 107
PointwiseAttack (class in foolbox.attacks), 83
PointwiseAttack (class in foolbox.v1.attacks), 125
PrecomputedAdversarialsAttack (class in fool-

box.attacks), 92

Index 157

Foolbox Documentation, Release 2.4.0

PrecomputedAdversarialsAttack (class in fool-
box.v1.attacks), 132

project() (foolbox.attacks.HopSkipJumpAttack
method), 90

project() (foolbox.v1.attacks.HopSkipJumpAttack
method), 131

project_shrinkage_thresholding() (fool-
box.attacks.EADAttack class method), 78

project_shrinkage_thresholding() (fool-
box.v1.attacks.EADAttack class method),
119

ProjectedGradientDescent (in module fool-
box.attacks), 67

ProjectedGradientDescent (in module fool-
box.v1.attacks), 107

ProjectedGradientDescentAttack (class in
foolbox.attacks), 66

ProjectedGradientDescentAttack (class in
foolbox.v1.attacks), 106

PyTorchModel (class in foolbox.models), 29

R
RandomPGD (in module foolbox.attacks), 68
RandomPGD (in module foolbox.v1.attacks), 108
RandomProjectedGradientDescent (in module

foolbox.attacks), 68
RandomProjectedGradientDescent (in module

foolbox.v1.attacks), 108
RandomStartProjectedGradientDescentAttack

(class in foolbox.attacks), 67
RandomStartProjectedGradientDescentAttack

(class in foolbox.v1.attacks), 107
reached_threshold() (fool-

box.adversarial.Adversarial method), 99
reached_threshold() (fool-

box.v1.adversarial.Adversarial method),
139

S
SaliencyMapAttack (class in foolbox.attacks), 75
SaliencyMapAttack (class in foolbox.v1.attacks),

116
SaltAndPepperNoiseAttack (class in fool-

box.attacks), 88
SaltAndPepperNoiseAttack (class in fool-

box.v1.attacks), 129
samples() (in module foolbox.utils), 102
select_delta() (fool-

box.attacks.HopSkipJumpAttack method),
90

select_delta() (fool-
box.v1.attacks.HopSkipJumpAttack method),
132

SinglePixelAttack (class in foolbox.attacks), 80

SinglePixelAttack (class in foolbox.v1.attacks),
121

SLSQPAttack (class in foolbox.v1.attacks), 116
softmax() (in module foolbox.utils), 101
SparseFoolAttack (class in foolbox.v1.attacks), 120
SparseL1BasicIterativeAttack (class in fool-

box.attacks), 79
SpatialAttack (class in foolbox.attacks), 82
SpatialAttack (class in foolbox.v1.attacks), 124

T
target_class (foolbox.adversarial.Adversarial at-

tribute), 99
target_class (foolbox.v1.adversarial.Adversarial

attribute), 139
TargetClass (class in foolbox.criteria), 56
TargetClassProbability (class in fool-

box.criteria), 58
TensorFlowEagerModel (class in foolbox.models),

27
TensorFlowModel (class in foolbox.models), 25
TheanoModel (class in foolbox.models), 35
TopKMisclassification (class in fool-

box.criteria), 56

U
unperturbed (foolbox.adversarial.Adversarial at-

tribute), 99
unperturbed (foolbox.v1.adversarial.Adversarial at-

tribute), 139

V
VirtualAdversarialAttack (class in fool-

box.attacks), 79

158 Index

	Installation
	Stable release
	Pre-release versions
	Development version
	Contributing to Foolbox

	Tutorial
	Creating a model
	Specifying the criterion
	Running the attack
	Visualizing the adversarial examples
	External Resources

	Examples
	Running an attack
	Creating a model
	Applying an attack
	Creating an untargeted adversarial for a PyTorch model
	Creating a targeted adversarial for the Keras ResNet model

	Advanced
	Implicit
	Explicit

	Model Zoo
	Downloading a model

	Development
	Running Tests
	Style Guide
	New Adversarial Attacks

	FAQ
	foolbox.models
	Models
	Wrappers
	Detailed description

	foolbox.criteria
	Criteria
	Examples
	Detailed description

	foolbox.zoo
	Get Model
	Fetch Weights

	foolbox.distances
	Distances
	Aliases
	Base class
	Detailed description

	foolbox.attacks
	Gradient-based attacks
	Score-based attacks
	Decision-based attacks
	Other attacks

	foolbox.adversarial
	foolbox.utils
	foolbox.v1.attacks
	Gradient-based attacks
	Score-based attacks
	Decision-based attacks
	Other attacks

	foolbox.v1.adversarial
	Indices and tables
	Bibliography
	Python Module Index
	Index

