
Foolbox Documentation
Release 1.8.0

Jonas Rauber & Wieland Brendel

Jun 29, 2019

User Guide

1 Robust Vision Benchmark 3
1.1 Installation . 3
1.2 Tutorial . 4
1.3 Examples . 5
1.4 Advanced . 9
1.5 Model Zoo . 10
1.6 Development . 10
1.7 FAQ . 11
1.8 foolbox.models . 11
1.9 foolbox.criteria . 28
1.10 foolbox.zoo . 34
1.11 foolbox.distances . 35
1.12 foolbox.attacks . 36
1.13 foolbox.adversarial . 59
1.14 foolbox.utils . 61

2 Indices and tables 63

Bibliography 65

Python Module Index 67

Index 69

i

ii

Foolbox Documentation, Release 1.8.0

Foolbox is a Python toolbox to create adversarial examples that fool neural networks.

It comes with support for many frameworks to build models including

• TensorFlow

• PyTorch

• Theano

• Keras

• Lasagne

• MXNet

and it is easy to extend to other frameworks.

In addition, it comes with a large collection of adversarial attacks, both gradient-based attacks as well as black-box
attacks. See foolbox.attacks for details.

The source code and a minimal working example can be found on GitHub.

User Guide 1

https://github.com/bethgelab/foolbox#example
https://github.com/bethgelab/foolbox

Foolbox Documentation, Release 1.8.0

2 User Guide

CHAPTER 1

Robust Vision Benchmark

You might want to have a look at our recently announced Robust Vision Benchmark, a benchmark for adversarial
attacks and the robustness of machine learning models.

1.1 Installation

Foolbox is a Python package to create adversarial examples. We test using Python 2.7, 3.5 and 3.6, but other versions
of Python might work as well. We recommend using Python 3!.

1.1.1 Stable release

You can install the latest stable release of Foolbox from PyPI using pip:

pip install foolbox

Make sure that pip installs packages for Python 3, otherwise you might need to use pip3 instead of pip.

3

https://robust.vision/benchmark
https://robust.vision/benchmark

Foolbox Documentation, Release 1.8.0

1.1.2 Development version

Alternatively, you can install the latest development version of Foolbox from GitHub. We try to keep the master branch
stable, so this version should usually work fine. Feel free to open an issue on GitHub if you encounter any problems.

pip install https://github.com/bethgelab/foolbox/archive/master.zip

1.1.3 Contributing to Foolbox

If you would like to contribute the development of Foolbox, install it in editable mode:

git clone https://github.com/bethgelab/foolbox.git
cd foolbox
pip install --editable .

To contribute your changes, you will need to fork the Foolbox repository on GitHub. You can than add it as a remote:

git remote rename origin upstream
git remote add origin https://github.com/<your-github-name>/foolbox.git

You can now commit your changes, push them to your fork and create a pull-request to contribute them to Foolbox.

1.2 Tutorial

This tutorial will show you how an adversarial attack can be used to find adversarial examples for a model.

1.2.1 Creating a model

For the tutorial, we will target VGG19 implemented in TensorFlow, but it is straight forward to apply the same to other
models or other frameworks such as Theano or PyTorch.

import tensorflow as tf

images = tf.placeholder(tf.float32, (None, 224, 224, 3))
preprocessed = vgg_preprocessing(images)
logits = vgg19(preprocessed)

To turn a model represented as a standard TensorFlow graph into a model that can be attacked by the Adversarial
Toolbox, all we have to do is to create a new TensorFlowModel instance:

from foolbox.models import TensorFlowModel

model = TensorFlowModel(images, logits, bounds=(0, 255))

1.2.2 Specifying the criterion

To run an adversarial attack, we need to specify the type of adversarial we are looking for. This can be done using the
Criterion class.

4 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

from foolbox.criteria import TargetClassProbability

target_class = 22
criterion = TargetClassProbability(target_class, p=0.99)

1.2.3 Running the attack

Finally, we can create and apply the attack:

from foolbox.attacks import LBFGSAttack

attack = LBFGSAttack(model, criterion)

image = np.asarray(Image.open('example.jpg'))
label = np.argmax(model.predictions(image))

adversarial = attack(image, label=label)

1.2.4 Visualizing the adversarial examples

To plot the adversarial example we can use matplotlib:

import matplotlib.pyplot as plt

plt.subplot(1, 3, 1)
plt.imshow(image)

plt.subplot(1, 3, 2)
plt.imshow(adversarial)

plt.subplot(1, 3, 3)
plt.imshow(adversarial - image)

1.3 Examples

Here you can find a collection of examples how Foolbox models can be created using different deep learning frame-
works and some full-blown attack examples at the end.

1.3.1 Creating a model

Keras: ResNet50

import keras
import numpy as np
import foolbox

keras.backend.set_learning_phase(0)
kmodel = keras.applications.resnet50.ResNet50(weights='imagenet')
preprocessing = (np.array([104, 116, 123]), 1)

(continues on next page)

1.3. Examples 5

Foolbox Documentation, Release 1.8.0

(continued from previous page)

model = foolbox.models.KerasModel(kmodel, bounds=(0, 255),
→˓preprocessing=preprocessing)

image, label = foolbox.utils.imagenet_example()
::-1 reverses the color channels, because Keras ResNet50 expects BGR instead of RGB
print(np.argmax(model.predictions(image[:, :, ::-1])), label)

PyTorch: ResNet18

You might be interested in checking out the full PyTorch example at the end of this document.

import torchvision.models as models
import numpy as np
import foolbox

instantiate the model
resnet18 = models.resnet18(pretrained=True).cuda().eval() # for CPU, remove cuda()
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
model = foolbox.models.PyTorchModel(resnet18, bounds=(0, 1), num_classes=1000,
→˓preprocessing=(mean, std))

image, label = foolbox.utils.imagenet_example(data_format='channels_first')
image = image / 255
print(np.argmax(model.predictions(image)), label)

TensorFlow: VGG19

First, create the model in TensorFlow.

import tensorflow as tf
from tensorflow.contrib.slim.nets import vgg
import numpy as np
import foolbox

images = tf.placeholder(tf.float32, shape=(None, 224, 224, 3))
preprocessed = images - [123.68, 116.78, 103.94]
logits, _ = vgg.vgg_19(preprocessed, is_training=False)
restorer = tf.train.Saver(tf.trainable_variables())

image, _ = foolbox.utils.imagenet_example()

Then transform it into a Foolbox model using one of these four options:

Option 1

This option is recommended if you want to keep the code as short as possible. It makes use of the TensorFlow session
created by Foolbox internally if no default session is set.

with foolbox.models.TensorFlowModel(images, logits, (0, 255)) as model:
restorer.restore(model.session, '/path/to/vgg_19.ckpt')
print(np.argmax(model.predictions(image)))

6 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

Option 2

This option is recommended if you want to create the TensorFlow session yourself.

with tf.Session() as session:
restorer.restore(session, '/path/to/vgg_19.ckpt')
model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
print(np.argmax(model.predictions(image)))

Option 3

This option is recommended if you want to avoid nesting context managers, e.g. during interactive development.

session = tf.InteractiveSession()
restorer.restore(session, '/path/to/vgg_19.ckpt')
model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
print(np.argmax(model.predictions(image)))
session.close()

Option 4

This is possible, but usually one of the other options should be preferred.

session = tf.Session()
with session.as_default():

restorer.restore(session, '/path/to/vgg_19.ckpt')
model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
print(np.argmax(model.predictions(image)))

session.close()

1.3.2 Applying an attack

Once you created a Foolbox model (see the previous section), you can apply an attack.

FGSM (GradientSignAttack)

create a model (see previous section)
fmodel = ...

get source image and label
image, label = foolbox.utils.imagenet_example()

apply attack on source image
attack = foolbox.attacks.FGSM(fmodel)
adversarial = attack(image[:,:,::-1], label)

1.3. Examples 7

Foolbox Documentation, Release 1.8.0

1.3.3 Creating an untargeted adversarial for a PyTorch model

import foolbox
import torch
import torchvision.models as models
import numpy as np

instantiate the model
resnet18 = models.resnet18(pretrained=True).eval()
if torch.cuda.is_available():

resnet18 = resnet18.cuda()
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
fmodel = foolbox.models.PyTorchModel(

resnet18, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))

get source image and label
image, label = foolbox.utils.imagenet_example(data_format='channels_first')
image = image / 255. # because our model expects values in [0, 1]

print('label', label)
print('predicted class', np.argmax(fmodel.predictions(image)))

apply attack on source image
attack = foolbox.attacks.FGSM(fmodel)
adversarial = attack(image, label)

print('adversarial class', np.argmax(fmodel.predictions(adversarial)))

outputs

label 282
predicted class 282
adversarial class 281

To plot image and adversarial, don’t forget to move the channel axis to the end before passing them to matplotlib’s
imshow, e.g. using np.transpose(image, (1, 2, 0)).

1.3.4 Creating a targeted adversarial for the Keras ResNet model

import foolbox
from foolbox.models import KerasModel
from foolbox.attacks import LBFGSAttack
from foolbox.criteria import TargetClassProbability
import numpy as np
import keras
from keras.applications.resnet50 import ResNet50
from keras.applications.resnet50 import preprocess_input
from keras.applications.resnet50 import decode_predictions

keras.backend.set_learning_phase(0)
kmodel = ResNet50(weights='imagenet')
preprocessing = (np.array([104, 116, 123]), 1)
fmodel = KerasModel(kmodel, bounds=(0, 255), preprocessing=preprocessing)

image, label = foolbox.utils.imagenet_example()
(continues on next page)

8 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

(continued from previous page)

run the attack
attack = LBFGSAttack(model=fmodel, criterion=TargetClassProbability(781, p=.5))
adversarial = attack(image[:, :, ::-1], label)

show results
print(np.argmax(fmodel.predictions(adversarial)))
print(foolbox.utils.softmax(fmodel.predictions(adversarial))[781])
adversarial_rgb = adversarial[np.newaxis, :, :, ::-1]
preds = kmodel.predict(preprocess_input(adversarial_rgb.copy()))
print("Top 5 predictions (adversarial: ", decode_predictions(preds, top=5))

outputs

781
0.832095
Top 5 predictions (adversarial: [[('n04149813', 'scoreboard', 0.83013469), (
→˓'n03196217', 'digital_clock', 0.030192226), ('n04152593', 'screen', 0.016133979), (
→˓'n04141975', 'scale', 0.011708578), ('n03782006', 'monitor', 0.0091574294)]]

1.4 Advanced

The Adversarial class provides an advanced way to specify the adversarial example that should be found by an
attack and provides detailed information about the created adversarial. In addition, it provides a way to improve a
previously found adversarial example by re-running an attack.

1.4.1 Implicit

model = TensorFlowModel(images, logits, bounds=(0, 255))
criterion = TargetClassProbability('ostrich', p=0.99)
attack = LBFGSAttack(model, criterion)

Running the attack by passing image and label will implicitly create an Adversarial instance. By passing un-
pack=False we tell the attack to return the Adversarial instance rather than the actual image.

adversarial = attack(image, label=label, unpack=False)

We can then get the actual image using the image attribute:

adversarial_image = adversarial.image

1.4.2 Explicit

model = TensorFlowModel(images, logits, bounds=(0, 255))
criterion = TargetClassProbability('ostrich', p=0.99)
attack = LBFGSAttack()

We can also create the Adversarial instance ourselves and then pass it to the attack.

1.4. Advanced 9

Foolbox Documentation, Release 1.8.0

adversarial = Adversarial(model, criterion, image, label)
attack(adversarial)

Again, we can get the image using the image attribute:

adversarial_image = adversarial.image

This approach gives us more flexibility and allows us to specify a different distance measure:

distance = MeanAbsoluteDistance
adversarial = Adversarial(model, criterion, image, label, distance=distance)

1.5 Model Zoo

This tutorial will show you how the model zoo can be used to run your attack against a robust model.

1.5.1 Downloading a model

For this tutorial, we will download the Madry et al. CIFAR10 challenge robust model implemented in TensorFlow and
run a FGSM (GradienSignAttack) against it.

from foolbox import zoo

download the model
model = zoo.get_model(url="https://github.com/bethgelab/cifar10_challenge.git")

read image and label
image = ...
label = ...

apply attack on source image
attack = foolbox.attacks.FGSM(model)
adversarial = attack(image[:,:,::-1], label)

1.6 Development

To install Foolbox in editable mode, see the installation instructions under Contributing to Foolbox.

1.6.1 Running Tests

pytest

To run the tests, you need to have pytest and pytest-cov installed. Afterwards, you can simply run pytest in the root
folder of the project. Some tests will require TensorFlow, PyTorch and the other frameworks, so to run all tests, you
need to have all of them installed.

10 Chapter 1. Robust Vision Benchmark

https://docs.pytest.org/en/latest/getting-started.html
http://pytest-cov.readthedocs.io/en/latest/readme.html#installation

Foolbox Documentation, Release 1.8.0

flake8

Foolbox follows the PEP 8 style guide for Python code. To check for violations, we use flake8 and run it like this:

flake8 --ignore E402,E741 .

1.6.2 New Adversarial Attacks

Foolbox makes it easy to develop new adversarial attacks that can be applied to arbitrary models.

To implement an attack, simply subclass the Attack class, implement the __call__() method and decorate it
with the :decorator:‘call_decorator‘. The :decorator:‘call_decorator‘ will make sure that your __call__()
implementation will be called with an instance of the Adversarial class. You can use this instance to ask for
model predictions and gradients, get the original image and its label and more. In addition, the Adversarial
instance automatically keeps track of the best adversarial amongst all the images tested by the attack. That way, the
implementation of the attack can focus on the attack logic.

1.7 FAQ

How does Foolbox handle inputs that are misclassified without any perturbation? The attacks will not be run
and instead the unperturbed input is returned as an adversarial with distance 0 to the clean input.

What happens if an attack fails? The attack will return None and the distance will be np.inf.

Why is the returned adversarial not misclassified by my model? Most likely you have a discrepancy between how
you evaluate your model and how you told Foolbox to evaluate it. For example, you might not be using the
same preprocessing. Compare the output of the predictions method of the Foolbox model instance with your
model’s output (logits). This problem can also be caused by non-deterministic models. Make sure that your
model is not stochastic and always returns the same output when given the same input. In rare cases it can also
be that a seemlingly deterministic model becomes numerically stochastic around the decision boundary (e.g.
because of non-deterministic floating point reduce_sum operations). You can always check adversarial.output
and adversarial.adversarial_class to see the output Foolbox got from your model when deciding that this was
an adversarial.

Why are the gradients multiplied by the bounds (max_ - min_)? This scaling is meant to make hyperparameters
such as the epsilon for FGSM independent of the bounds. epsilon = 0.1 thus means that you perturb the image
by 10% relative to the max - max range (which could for example go from 0 to 1 or from 0 to 255).

1.8 foolbox.models

Provides classes to wrap existing models in different framworks so that they provide a unified API to the attacks.

1.8.1 Models

Model Base class to provide attacks with a unified interface to
models.

DifferentiableModel Base class for differentiable models that provide gradi-
ents.

Continued on next page

1.7. FAQ 11

https://www.python.org/dev/peps/pep-0008/
http://flake8.pycqa.org/en/latest/

Foolbox Documentation, Release 1.8.0

Table 1 – continued from previous page
TensorFlowModel Creates a Model instance from existing TensorFlow

tensors.
TensorFlowEagerModel Creates a Model instance from a TensorFlow model us-

ing eager execution.
PyTorchModel Creates a Model instance from a PyTorch module.
KerasModel Creates a Model instance from a Keras model.
TheanoModel Creates a Model instance from existing Theano ten-

sors.
LasagneModel Creates a Model instance from a Lasagne network.
MXNetModel Creates a Model instance from existing MXNet sym-

bols and weights.
MXNetGluonModel Creates a Model instance from an existing MXNet

Gluon Block.

1.8.2 Wrappers

ModelWrapper Base class for models that wrap other models.
DifferentiableModelWrapper Base class for models that wrap other models and pro-

vide gradient methods.
ModelWithoutGradients Turns a model into a model without gradients.
ModelWithEstimatedGradients Turns a model into a model with gradients estimated by

the given gradient estimator.
CompositeModel Combines predictions of a (black-box) model with the

gradient of a (substitute) model.

1.8.3 Detailed description

class foolbox.models.Model(bounds, channel_axis, preprocessing=(0, 1))
Base class to provide attacks with a unified interface to models.

The Model class represents a model and provides a unified interface to its predictions. Subclasses must imple-
ment batch_predictions and num_classes.

Model instances can be used as context managers and subclasses can require this to allocate and release re-
sources.

Parameters

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

12 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions(self, image)
Convenience method that calculates predictions for a single image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

numpy.ndarray Vector of predictions (logits, i.e. before the softmax) with shape (number
of classes,).

See also:

batch_predictions()

class foolbox.models.DifferentiableModel(bounds, channel_axis, preprocessing=(0, 1))
Base class for differentiable models that provide gradients.

The DifferentiableModel class can be used as a base class for models that provide gradients. Subclasses
must implement predictions_and_gradient.

A model should be considered differentiable based on whether it provides a
predictions_and_gradient() method and a gradient() method, not based on whether it
subclasses DifferentiableModel.

A differentiable model does not necessarily provide reasonable values for the gradients, the gradient can be
wrong. It only guarantees that the relevant methods can be called.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

1.8. foolbox.models 13

Foolbox Documentation, Release 1.8.0

gradient(self, image, label)
Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient. Subclasses can provide more efficient imple-
mentations that only calculate the gradient.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

class foolbox.models.TensorFlowModel(images, logits, bounds, channel_axis=3, preprocess-
ing=(0, 1))

Creates a Model instance from existing TensorFlow tensors.

Parameters

images [tensorflow.Tensor] The input to the model, usually a tensorflow.placeholder.

logits [tensorflow.Tensor] The predictions of the model, before the softmax.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

14 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

classmethod from_keras(model, bounds, input_shape=None, channel_axis=3, preprocess-
ing=(0, 1))

Alternative constructor for a TensorFlowModel that accepts a tf.keras.Model instance.

Parameters

model [tensorflow.keras.Model] A tensorflow.keras.Model that accepts a single input tensor
and returns a single output tensor representing logits.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0,
255).

input_shape [tuple] The shape of a single input, e.g. (28, 28, 1) for MNIST. If None, tries
to get the the shape from the model’s input_shape attribute.

channel_axis [int] The index of the axis that represents color channels.

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocess-
ing of input; we first subtract the first element of preprocessing from the input and then
divide the input by the second element.

gradient(self, image, label)
Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient. Subclasses can provide more efficient imple-
mentations that only calculate the gradient.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

1.8. foolbox.models 15

Foolbox Documentation, Release 1.8.0

See also:

gradient()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

class foolbox.models.TensorFlowEagerModel(model, bounds, num_classes=None, chan-
nel_axis=3, preprocessing=(0, 1))

Creates a Model instance from a TensorFlow model using eager execution.

Parameters

model [a TensorFlow eager model] The TensorFlow eager model that should be attacked. It
will be called with input tensors and should return logits.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

num_classes [int] If None, will try to infer it from the model’s output shape.

channel_axis [int] The index of the axis that represents color channels.

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

16 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

gradient()

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

class foolbox.models.PyTorchModel(model, bounds, num_classes, channel_axis=1, de-
vice=None, preprocessing=(0, 1))

Creates a Model instance from a PyTorch module.

Parameters

model [torch.nn.Module] The PyTorch model that should be attacked.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

num_classes [int] Number of classes for which the model will output predictions.

channel_axis [int] The index of the axis that represents color channels.

device [string] A string specifying the device to do computation on. If None, will default to
“cuda:0” if torch.cuda.is_available() or “cpu” if not.

1.8. foolbox.models 17

Foolbox Documentation, Release 1.8.0

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

18 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

class foolbox.models.KerasModel(model, bounds, channel_axis=3, preprocessing=(0, 1), pre-
dicts=’probabilities’)

Creates a Model instance from a Keras model.

Parameters

model [keras.models.Model] The Keras model that should be attacked.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

predicts [str] Specifies whether the Keras model predicts logits or probabilities. Logits are
preferred, but probabilities are the default.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

1.8. foolbox.models 19

Foolbox Documentation, Release 1.8.0

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

class foolbox.models.TheanoModel(images, logits, bounds, num_classes, channel_axis=1, prepro-
cessing=[0, 1])

Creates a Model instance from existing Theano tensors.

Parameters

images [theano.tensor] The input to the model.

logits [theano.tensor] The predictions of the model, before the softmax.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

num_classes [int] Number of classes for which the model will output predictions.

channel_axis [int] The index of the axis that represents color channels.

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

20 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

predictions()

gradient(self, image, label)
Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient. Subclasses can provide more efficient imple-
mentations that only calculate the gradient.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

class foolbox.models.LasagneModel(input_layer, logits_layer, bounds, channel_axis=1, prepro-
cessing=(0, 1))

Creates a Model instance from a Lasagne network.

Parameters

input_layer [lasagne.layers.Layer] The input to the model.

logits_layer [lasagne.layers.Layer] The output of the model, before the softmax.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

1.8. foolbox.models 21

Foolbox Documentation, Release 1.8.0

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

gradient(self, image, label)
Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient. Subclasses can provide more efficient imple-
mentations that only calculate the gradient.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

num_classes(self)
Determines the number of classes.

Returns

22 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

class foolbox.models.MXNetModel(data, logits, args, ctx, num_classes, bounds, channel_axis=1,
aux_states=None, preprocessing=(0, 1))

Creates a Model instance from existing MXNet symbols and weights.

Parameters

data [mxnet.symbol.Variable] The input to the model.

logits [mxnet.symbol.Symbol] The predictions of the model, before the softmax.

args [dictionary mapping str to mxnet.nd.array] The parameters of the model.

ctx [mxnet.context.Context] The device, e.g. mxnet.cpu() or mxnet.gpu().

num_classes [int] The number of classes.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

aux_states [dictionary mapping str to mxnet.nd.array] The states of auxiliary parameters of the
model.

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

1.8. foolbox.models 23

Foolbox Documentation, Release 1.8.0

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

class foolbox.models.MXNetGluonModel(block, bounds, num_classes, ctx=None, chan-
nel_axis=1, preprocessing=(0, 1))

Creates a Model instance from an existing MXNet Gluon Block.

Parameters

block [mxnet.gluon.Block] The Gluon Block representing the model to be run.

ctx [mxnet.context.Context] The device, e.g. mxnet.cpu() or mxnet.gpu().

num_classes [int] The number of classes.

bounds [tuple] Tuple of lower and upper bound for the pixel values, usually (0, 1) or (0, 255).

channel_axis [int] The index of the axis that represents color channels.

preprocessing: 2-element tuple with floats or numpy arrays Elementwises preprocessing of
input; we first subtract the first element of preprocessing from the input and then divide the
input by the second element.

24 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

1.8. foolbox.models 25

Foolbox Documentation, Release 1.8.0

class foolbox.models.ModelWrapper(model)
Base class for models that wrap other models.

This base class can be used to implement model wrappers that turn models into new models, for example by
preprocessing the input or modifying the gradient.

Parameters

model [Model] The model that is wrapped.

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions(self, image)
Convenience method that calculates predictions for a single image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

numpy.ndarray Vector of predictions (logits, i.e. before the softmax) with shape (number
of classes,).

See also:

batch_predictions()

class foolbox.models.DifferentiableModelWrapper(model)
Base class for models that wrap other models and provide gradient methods.

This base class can be used to implement model wrappers that turn models into new models, for example by
preprocessing the input or modifying the gradient.

Parameters

model [Model] The model that is wrapped.

class foolbox.models.ModelWithoutGradients(model)
Turns a model into a model without gradients.

class foolbox.models.ModelWithEstimatedGradients(model, gradient_estimator)
Turns a model into a model with gradients estimated by the given gradient estimator.

26 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

Parameters

model [Model] The model that is wrapped.

gradient_estimator [callable] Callable taking three arguments (pred_fn, image, label) and
returning the estimated gradients. pred_fn will be the batch_predictions method of the
wrapped model.

class foolbox.models.CompositeModel(forward_model, backward_model)
Combines predictions of a (black-box) model with the gradient of a (substitute) model.

Parameters

forward_model [Model] The model that should be fooled and will be used for predictions.

backward_model [Model] The model that provides the gradients.

backward(self, gradient, image)
Backpropagates the gradient of some loss w.r.t. the logits through the network and returns the gradient of
that loss w.r.t to the input image.

Parameters

gradient [numpy.ndarray] Gradient of some loss w.r.t. the logits.

image [numpy.ndarray] Image with shape (height, width, channels).

Returns

gradient [numpy.ndarray] The gradient w.r.t the image.

See also:

gradient()

batch_predictions(self, images)
Calculates predictions for a batch of images.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

Returns

numpy.ndarray Predictions (logits, i.e. before the softmax) with shape (batch size, number
of classes).

See also:

predictions()

gradient(self, image, label)
Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient. Subclasses can provide more efficient imple-
mentations that only calculate the gradient.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

1.8. foolbox.models 27

Foolbox Documentation, Release 1.8.0

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

num_classes(self)
Determines the number of classes.

Returns

int The number of classes for which the model creates predictions.

predictions_and_gradient(self, image, label)
Calculates predictions for an image and the gradient of the cross-entropy loss w.r.t. the image.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

label [int] Reference label used to calculate the gradient.

Returns

predictions [numpy.ndarray] Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

gradient [numpy.ndarray] The gradient of the cross-entropy loss w.r.t. the image. Will have
the same shape as the image.

See also:

gradient()

1.9 foolbox.criteria

Provides classes that define what is adversarial.

1.9.1 Criteria

We provide criteria for untargeted and targeted adversarial attacks.

Misclassification Defines adversarials as images for which the predicted
class is not the original class.

TopKMisclassification Defines adversarials as images for which the original
class is not one of the top k predicted classes.

OriginalClassProbability Defines adversarials as images for which the probability
of the original class is below a given threshold.

ConfidentMisclassification Defines adversarials as images for which the probabil-
ity of any class other than the original is above a given
threshold.

28 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

TargetClass Defines adversarials as images for which the predicted
class is the given target class.

TargetClassProbability Defines adversarials as images for which the probability
of a given target class is above a given threshold.

1.9.2 Examples

Untargeted criteria:

>>> from foolbox.criteria import Misclassification
>>> criterion1 = Misclassification()

>>> from foolbox.criteria import TopKMisclassification
>>> criterion2 = TopKMisclassification(k=5)

Targeted criteria:

>>> from foolbox.criteria import TargetClass
>>> criterion3 = TargetClass(22)

>>> from foolbox.criteria import TargetClassProbability
>>> criterion4 = TargetClassProbability(22, p=0.99)

Criteria can be combined to create a new criterion:

>>> criterion5 = criterion2 & criterion3

1.9.3 Detailed description

class foolbox.criteria.Criterion
Base class for criteria that define what is adversarial.

The Criterion class represents a criterion used to determine if predictions for an image are adversarial
given a reference label. It should be subclassed when implementing new criteria. Subclasses must implement
is_adversarial.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

1.9. foolbox.criteria 29

Foolbox Documentation, Release 1.8.0

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.Misclassification
Defines adversarials as images for which the predicted class is not the original class.

See also:

TopKMisclassification

Notes

Uses numpy.argmax to break ties.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.ConfidentMisclassification(p)
Defines adversarials as images for which the probability of any class other than the original is above a given
threshold.

Parameters

p [float] The threshold probability. If the probability of any class other than the original is at
least p, the image is considered an adversarial. It must satisfy 0 <= p <= 1.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

30 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.TopKMisclassification(k)
Defines adversarials as images for which the original class is not one of the top k predicted classes.

For k = 1, the Misclassification class provides a more efficient implementation.

Parameters

k [int] Number of top predictions to which the reference label is compared to.

See also:

Misclassification Provides a more effcient implementation for k = 1.

Notes

Uses numpy.argsort to break ties.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

1.9. foolbox.criteria 31

Foolbox Documentation, Release 1.8.0

class foolbox.criteria.TargetClass(target_class)
Defines adversarials as images for which the predicted class is the given target class.

Parameters

target_class [int] The target class that needs to be predicted for an image to be considered an
adversarial.

Notes

Uses numpy.argmax to break ties.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.OriginalClassProbability(p)
Defines adversarials as images for which the probability of the original class is below a given threshold.

This criterion alone does not guarantee that the class predicted for the adversarial image is not the original class
(unless p < 1 / number of classes). Therefore, it should usually be combined with a classifcation criterion.

Parameters

p [float] The threshold probability. If the probability of the original class is below this threshold,
the image is considered an adversarial. It must satisfy 0 <= p <= 1.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

32 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.criteria.TargetClassProbability(target_class, p)
Defines adversarials as images for which the probability of a given target class is above a given threshold.

If the threshold is below 0.5, this criterion does not guarantee that the class predicted for the adversarial image
is not the original class. In that case, it should usually be combined with a classification criterion.

Parameters

target_class [int] The target class for which the predicted probability must be above the thresh-
old probability p, otherwise the image is not considered an adversarial.

p [float] The threshold probability. If the probability of the target class is above this threshold,
the image is considered an adversarial. It must satisfy 0 <= p <= 1.

is_adversarial(self, predictions, label)
Decides if predictions for an image are adversarial given a reference label.

Parameters

predictions [numpy.ndarray] A vector with the pre-softmax predictions for some im-
age.

label [int] The label of the unperturbed reference image.

Returns

bool True if an image with the given predictions is an adversarial example when the ground-
truth class is given by label, False otherwise.

name(self)
Returns a human readable name that uniquely identifies the criterion with its hyperparameters.

Returns

str Human readable name that uniquely identifies the criterion with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

1.9. foolbox.criteria 33

Foolbox Documentation, Release 1.8.0

1.10 foolbox.zoo

1.10.1 Get Model

foolbox.zoo.get_model(url)
Provides utilities to download foolbox-compatible robust models to easily test attacks against them by simply
providing a git-URL.

Examples

Instantiate a model:

>>> from foolbox import zoo
>>> url = "https://github.com/bveliqi/foolbox-zoo-dummy.git"
>>> model = zoo.get_model(url) # doctest: +SKIP

Only works with a foolbox-zoo compatible repository. I.e. models need to have a foolbox_model.py file with a
create()-function, which returns a foolbox-wrapped model.

Example repositories:

• https://github.com/bethgelab/mnist_challenge

• https://github.com/bethgelab/cifar10_challenge

• https://github.com/bethgelab/convex_adversarial

Parameters url – URL to the git repository

Returns a foolbox-wrapped model instance

1.10.2 Fetch Weights

foolbox.zoo.fetch_weights(weights_uri, unzip=False)
Provides utilities to download and extract packages containing model weights when creating foolbox-zoo com-
patible repositories, if the weights are not part of the repository itself.

Examples

Download and unzip weights:

>>> from foolbox import zoo
>>> url = 'https://github.com/MadryLab/mnist_challenge_models/raw/master/secret.
→˓zip' # noqa F501
>>> weights_path = zoo.fetch_weights(url, unzip=True)

Parameters

• weights_uri – the URI to fetch the weights from

• unzip – should be True if the file to be downloaded is a zipped package

Returns local path where the weights have been downloaded and potentially unzipped to

34 Chapter 1. Robust Vision Benchmark

https://github.com/bethgelab/mnist_challenge
https://github.com/bethgelab/cifar10_challenge
https://github.com/bethgelab/convex_adversarial

Foolbox Documentation, Release 1.8.0

1.11 foolbox.distances

Provides classes to measure the distance between images.

1.11.1 Distances

MeanSquaredDistance Calculates the mean squared error between two images.
MeanAbsoluteDistance Calculates the mean absolute error between two images.
Linfinity Calculates the L-infinity norm of the difference between

two images.
L0 Calculates the L0 norm of the difference between two

images.

1.11.2 Aliases

MSE alias of foolbox.distances.
MeanSquaredDistance

MAE alias of foolbox.distances.
MeanAbsoluteDistance

Linf alias of foolbox.distances.Linfinity

1.11.3 Base class

To implement a new distance, simply subclass the Distance class and implement the _calculate() method.

Distance Base class for distances.

1.11.4 Detailed description

class foolbox.distances.Distance(reference=None, other=None, bounds=None, value=None)
Base class for distances.

This class should be subclassed when implementing new distances. Subclasses must implement _calculate.

class foolbox.distances.MeanSquaredDistance(reference=None, other=None,
bounds=None, value=None)

Calculates the mean squared error between two images.

class foolbox.distances.MeanAbsoluteDistance(reference=None, other=None,
bounds=None, value=None)

Calculates the mean absolute error between two images.

class foolbox.distances.Linfinity(reference=None, other=None, bounds=None, value=None)
Calculates the L-infinity norm of the difference between two images.

class foolbox.distances.L0(reference=None, other=None, bounds=None, value=None)
Calculates the L0 norm of the difference between two images.

foolbox.distances.MSE
alias of foolbox.distances.MeanSquaredDistance

1.11. foolbox.distances 35

Foolbox Documentation, Release 1.8.0

foolbox.distances.MAE
alias of foolbox.distances.MeanAbsoluteDistance

foolbox.distances.Linf
alias of foolbox.distances.Linfinity

1.12 foolbox.attacks

1.12.1 Gradient-based attacks

class foolbox.attacks.GradientAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Perturbs the image with the gradient of the loss w.r.t. the image, gradually increasing the magnitude until the
image is misclassified.

Does not do anything if the model does not have a gradient.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_epsilon=1)
Perturbs the image with the gradient of the loss w.r.t. the image, gradually increasing the magnitude until
the image is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the gradient direction or num-
ber of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

class foolbox.attacks.GradientSignAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Adds the sign of the gradient to the image, gradually increasing the magnitude until the image is misclassified.
This attack is often referred to as Fast Gradient Sign Method and was introduced in [R20d0064ee4c9-1].

Does not do anything if the model does not have a gradient.

References

[R20d0064ee4c9-1]

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_epsilon=1)
Adds the sign of the gradient to the image, gradually increasing the magnitude until the image is misclas-
sified.

Parameters

36 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the direction of the sign of the
gradient or number of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

foolbox.attacks.FGSM
alias of foolbox.attacks.gradient.GradientSignAttack

class foolbox.attacks.LinfinityBasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Basic Iterative Method introduced in [R37dbc8f24aee-1].

This attack is also known as Projected Gradient Descent (PGD) (without random start) or FGMS^k.

References

See also:

ProjectedGradientDescentAttack

[R37dbc8f24aee-1]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.05, iterations=10, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

1.12. foolbox.attacks 37

Foolbox Documentation, Release 1.8.0

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.BasicIterativeMethod
alias of foolbox.attacks.iterative_projected_gradient.
LinfinityBasicIterativeAttack

foolbox.attacks.BIM
alias of foolbox.attacks.iterative_projected_gradient.
LinfinityBasicIterativeAttack

class foolbox.attacks.L1BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L1 distance.

See also:

LinfinityBasicIterativeAttack

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.05, iterations=10, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.attacks.L2BasicIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Modified version of the Basic Iterative Method that minimizes the L2 distance.

See also:

38 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

LinfinityBasicIterativeAttack

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.05, iterations=10, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

class foolbox.attacks.ProjectedGradientDescentAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Projected Gradient Descent Attack introduced in [R367e8e10528a-1] without random start.

When used without a random start, this attack is also known as Basic Iterative Method (BIM) or FGSM^k.

References

See also:

LinfinityBasicIterativeAttack and RandomStartProjectedGradientDescentAttack

[R367e8e10528a-1]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.01, iterations=40, random_start=False, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

1.12. foolbox.attacks 39

Foolbox Documentation, Release 1.8.0

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.ProjectedGradientDescent
alias of foolbox.attacks.iterative_projected_gradient.
ProjectedGradientDescentAttack

class foolbox.attacks.RandomStartProjectedGradientDescentAttack(model=None,
crite-
rion=<foolbox.criteria.Misclassification
object>, dis-
tance=<class
’fool-
box.distances.MeanSquaredDistance’>,
thresh-
old=None)

The Projected Gradient Descent Attack introduced in [Re6066bc39e14-1] with random start.

References

See also:

ProjectedGradientDescentAttack

[Re6066bc39e14-1]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.01, iterations=40, random_start=True, return_early=True)

Simple iterative gradient-based attack known as Basic Iterative Method, Projected Gradient Descent or
FGSM^k.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

40 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

binary_search [bool or int] Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start the search. If False, hyperpa-
rameters are not optimized. Can also be an integer, specifying the number of binary search
steps (default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.RandomProjectedGradientDescent
alias of foolbox.attacks.iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

foolbox.attacks.RandomPGD
alias of foolbox.attacks.iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

class foolbox.attacks.MomentumIterativeAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The Momentum Iterative Method attack introduced in [R86d363e1fb2f-1]. It’s like the Basic Iterative Method
or Projected Gradient Descent except that it uses momentum.

References

[R86d363e1fb2f-1]

__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, step-
size=0.06, iterations=10, decay_factor=1.0, random_start=False, return_early=True)

Momentum-based iterative gradient attack known as Momentum Iterative Method.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search [bool] Whether to perform a binary search over epsilon and stepsize, keeping
their ratio constant and using their values to start the search. If False, hyperparameters
are not optimized. Can also be an integer, specifying the number of binary search steps
(default 20).

epsilon [float] Limit on the perturbation size; if binary_search is True, this value is only for
initialization and automatically adapted.

1.12. foolbox.attacks 41

Foolbox Documentation, Release 1.8.0

stepsize [float] Step size for gradient descent; if binary_search is True, this value is only for
initialization and automatically adapted.

iterations [int] Number of iterations for each gradient descent run.

decay_factor [float] Decay factor used by the momentum term.

random_start [bool] Start the attack from a random point rather than from the original
input.

return_early [bool] Whether an individual gradient descent run should stop as soon as an
adversarial is found.

foolbox.attacks.MomentumIterativeMethod
alias of foolbox.attacks.iterative_projected_gradient.MomentumIterativeAttack

class foolbox.attacks.LBFGSAttack(*args, **kwargs)
Uses L-BFGS-B to minimize the distance between the image and the adversarial as well as the cross-entropy
between the predictions for the adversarial and the the one-hot encoded target class.

If the criterion does not have a target class, a random class is chosen from the set of all classes except the original
one.

Notes

This implementation generalizes algorithm 1 in [Rf3ff9c7ff5d3-1] to support other targeted criteria and other
distance measures.

References

[Rf3ff9c7ff5d3-1]

__call__(self, input_or_adv, label=None, unpack=True, epsilon=1e-05, num_random_targets=0,
maxiter=150)

Uses L-BFGS-B to minimize the distance between the image and the adversarial as well as the cross-
entropy between the predictions for the adversarial and the the one-hot encoded target class.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilon [float] Epsilon of the binary search.

num_random_targets [int] Number of random target classes if no target class is given by
the criterion.

maxiter [int] Maximum number of iterations for L-BFGS-B.

__init__(self, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

name(self)
Returns a human readable name that uniquely identifies the attack with its hyperparameters.

Returns

42 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

str Human readable name that uniquely identifies the attack with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.attacks.DeepFoolAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Simple and close to optimal gradient-based adversarial attack.

Implementes DeepFool introduced in [Rb4dd02640756-1].

References

[Rb4dd02640756-1]

__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10, p=None)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.attacks.NewtonFoolAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Implements the NewtonFool Attack.

The attack was introduced in [R6a972939b320-1].

References

[R6a972939b320-1]

__call__(self, input_or_adv, label=None, unpack=True, max_iter=100, eta=0.01)

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

1.12. foolbox.attacks 43

Foolbox Documentation, Release 1.8.0

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

max_iter [int] The maximum number of iterations.

eta [float] the eta coefficient

class foolbox.attacks.DeepFoolL2Attack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.attacks.DeepFoolLinfinityAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10)
Simple and close to optimal gradient-based adversarial attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

steps [int] Maximum number of steps to perform.

subsample [int] Limit on the number of the most likely classes that should be considered.
A small value is usually sufficient and much faster.

p [int or float] Lp-norm that should be minimzed, must be 2 or np.inf.

class foolbox.attacks.ADefAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, threshold=None)

Adversarial attack that distorts the image, i.e. changes the locations of pixels. The algorithm is described

44 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

in [Rf241e6d2664d-1], a Repository with the original code can be found in [Rf241e6d2664d-2]. References
———- .. [Rf241e6d2664d-1] Rima Alaifari, Giovanni S. Alberti, and Tandri Gauksson:

“ADef: an Iterative Algorithm to Construct Adversarial Deformations”, https://arxiv.org/abs/1804.
07729

__call__(self, input_or_adv, unpack=True, max_iter=100, max_norm=<Mock name=’mock.inf’
id=’140580051901352’>, label=None, smooth=1.0, subsample=10)

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

max_iter [int > 0] Maximum number of iterations (default max_iter = 100).

max_norm [float] Maximum l2 norm of vector field (default max_norm = numpy.inf).

smooth [float >= 0] Width of the Gaussian kernel used for smoothing. (default is smooth =
0 for no smoothing).

subsample [int >= 2] Limit on the number of the most likely classes that should be consid-
ered. A small value is usually sufficient and much faster. (default subsample = 10)

class foolbox.attacks.SLSQPAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, threshold=None)

Uses SLSQP to minimize the distance between the image and the adversarial under the constraint that the image
is adversarial.

__call__(self, input_or_adv, label=None, unpack=True)
Uses SLSQP to minimize the distance between the image and the adversarial under the constraint that the
image is adversarial.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified image.
If image is a numpy array, label must be passed as well. If image is an Adversarial
instance, label must not be passed.

label [int] The reference label of the original image. Must be passed if image is a numpy
array, must not be passed if image is an Adversarial instance.

unpack [bool] If true, returns the adversarial image, otherwise returns the Adversarial ob-
ject.

class foolbox.attacks.SaliencyMapAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Implements the Saliency Map Attack.

The attack was introduced in [R08e06ca693ba-1].

References

[R08e06ca693ba-1]

1.12. foolbox.attacks 45

https://arxiv.org/abs/1804.07729
https://arxiv.org/abs/1804.07729

Foolbox Documentation, Release 1.8.0

__call__(self, input_or_adv, label=None, unpack=True, max_iter=2000, num_random_targets=0,
fast=True, theta=0.1, max_perturbations_per_pixel=7)

Implements the Saliency Map Attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

max_iter [int] The maximum number of iterations to run.

num_random_targets [int] Number of random target classes if no target class is given by
the criterion.

fast [bool] Whether to use the fast saliency map calculation.

theta [float] perturbation per pixel relative to [min, max] range.

max_perturbations_per_pixel [int] Maximum number of times a pixel can be modified.

class foolbox.attacks.IterativeGradientAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Like GradientAttack but with several steps for each epsilon.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, max_epsilon=1, steps=10)
Like GradientAttack but with several steps for each epsilon.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the gradient direction or num-
ber of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

steps [int] Number of iterations to run.

class foolbox.attacks.IterativeGradientSignAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Like GradientSignAttack but with several steps for each epsilon.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, max_epsilon=1, steps=10)
Like GradientSignAttack but with several steps for each epsilon.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

46 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of step sizes in the direction of the sign of the
gradient or number of step sizes between 0 and max_epsilon that should be tried.

max_epsilon [float] Largest step size if epsilons is not an iterable.

steps [int] Number of iterations to run.

class foolbox.attacks.CarliniWagnerL2Attack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

The L2 version of the Carlini & Wagner attack.

This attack is described in [Rc2cb572b91c5-1]. This implementation is based on the reference implementation
by Carlini [Rc2cb572b91c5-2]. For bounds (0, 1), it differs from [Rc2cb572b91c5-2] because we normalize
the squared L2 loss with the bounds.

References

[Rc2cb572b91c5-1], [Rc2cb572b91c5-2]

__call__(self, input_or_adv, label=None, unpack=True, binary_search_steps=5,
max_iterations=1000, confidence=0, learning_rate=0.005, initial_const=0.01,
abort_early=True)

The L2 version of the Carlini & Wagner attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

binary_search_steps [int] The number of steps for the binary search used to find the optimal
tradeoff-constant between distance and confidence.

max_iterations [int] The maximum number of iterations. Larger values are more accurate;
setting it too small will require a large learning rate and will produce poor results.

confidence [int or float] Confidence of adversarial examples: a higher value produces ad-
versarials that are further away, but more strongly classified as adversarial.

learning_rate [float] The learning rate for the attack algorithm. Smaller values produce
better results but take longer to converge.

initial_const [float] The initial tradeoff-constant to use to tune the relative importance of
distance and confidence. If binary_search_steps is large, the initial constant is not impor-
tant.

abort_early [bool] If True, Adam will be aborted if the loss hasn’t decreased for some time
(a tenth of max_iterations).

static best_other_class(logits, exclude)
Returns the index of the largest logit, ignoring the class that is passed as exclude.

1.12. foolbox.attacks 47

Foolbox Documentation, Release 1.8.0

classmethod loss_function(const, a, x, logits, reconstructed_original, confidence, min_, max_)
Returns the loss and the gradient of the loss w.r.t. x, assuming that logits = model(x).

1.12.2 Score-based attacks

class foolbox.attacks.SinglePixelAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Perturbs just a single pixel and sets it to the min or max.

__call__(self, input_or_adv, label=None, unpack=True, max_pixels=1000)
Perturbs just a single pixel and sets it to the min or max.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified image.
If image is a numpy array, label must be passed as well. If image is an Adversarial
instance, label must not be passed.

label [int] The reference label of the original image. Must be passed if image is a numpy
array, must not be passed if image is an Adversarial instance.

unpack [bool] If true, returns the adversarial image, otherwise returns the Adversarial ob-
ject.

max_pixels [int] Maximum number of pixels to try.

class foolbox.attacks.LocalSearchAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

A black-box attack based on the idea of greedy local search.

This implementation is based on the algorithm in [Rb320cee6998a-1].

References

[Rb320cee6998a-1]

__call__(self, input_or_adv, label=None, unpack=True, r=1.5, p=10.0, d=5, t=5, R=150)
A black-box attack based on the idea of greedy local search.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified image.
If image is a numpy array, label must be passed as well. If image is an Adversarial
instance, label must not be passed.

label [int] The reference label of the original image. Must be passed if image is a numpy
array, must not be passed if image is an Adversarial instance.

unpack [bool] If true, returns the adversarial image, otherwise returns the Adversarial ob-
ject.

r [float] Perturbation parameter that controls the cyclic perturbation; must be in [0, 2]

p [float] Perturbation parameter that controls the pixel sensitivity estimation

48 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

d [int] The half side length of the neighborhood square

t [int] The number of pixels perturbed at each round

R [int] An upper bound on the number of iterations

class foolbox.attacks.ApproximateLBFGSAttack(*args, **kwargs)
Same as LBFGSAttack with approximate_gradient set to True.

__init__(self, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

1.12.3 Decision-based attacks

class foolbox.attacks.BoundaryAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

A powerful adversarial attack that requires neither gradients nor probabilities.

This is the reference implementation for the attack introduced in [Re72ca268aa55-1].

Notes

This implementation provides several advanced features:

• ability to continue previous attacks by passing an instance of the Adversarial class

• ability to pass an explicit starting point; especially to initialize a targeted attack

• ability to pass an alternative attack used for initialization

• fine-grained control over logging

• ability to specify the batch size

• optional automatic batch size tuning

• optional multithreading for random number generation

• optional multithreading for candidate point generation

References

[Re72ca268aa55-1]

__call__(self, input_or_adv, label=None, unpack=True, iterations=5000, max_directions=25, start-
ing_point=None, initialization_attack=None, log_every_n_steps=1, spherical_step=0.01,
source_step=0.01, step_adaptation=1.5, batch_size=1, tune_batch_size=True,
threaded_rnd=True, threaded_gen=True, alternative_generator=False, inter-
nal_dtype=<Mock name=’mock.float64’ id=’140579968988608’>, verbose=False)

Applies the Boundary Attack.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, correctly classified image.
If image is a numpy array, label must be passed as well. If image is an Adversarial
instance, label must not be passed.

label [int] The reference label of the original image. Must be passed if image is a numpy
array, must not be passed if image is an Adversarial instance.

1.12. foolbox.attacks 49

Foolbox Documentation, Release 1.8.0

unpack [bool] If true, returns the adversarial image, otherwise returns the Adversarial ob-
ject.

iterations [int] Maximum number of iterations to run. Might converge and stop before that.

max_directions [int] Maximum number of trials per ieration.

starting_point [numpy.ndarray] Adversarial input to use as a starting point, in particular for
targeted attacks.

initialization_attack [Attack] Attack to use to find a starting point. Defaults to Blende-
dUniformNoiseAttack.

log_every_n_steps [int] Determines verbositity of the logging.

spherical_step [float] Initial step size for the orthogonal (spherical) step.

source_step [float] Initial step size for the step towards the target.

step_adaptation [float] Factor by which the step sizes are multiplied or divided.

batch_size [int] Batch size or initial batch size if tune_batch_size is True

tune_batch_size [bool] Whether or not the batch size should be automatically chosen be-
tween 1 and max_directions.

threaded_rnd [bool] Whether the random number generation should be multithreaded.

threaded_gen [bool] Whether the candidate point generation should be multithreaded.

alternative_generator: bool Whether an alternative implemenation of the candidate gener-
ator should be used.

internal_dtype [np.float32 or np.float64] Higher precision might be slower but is numeri-
cally more stable.

verbose [bool] Controls verbosity of the attack.

class foolbox.attacks.SpatialAttack(model=None, criterion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Adversarially chosen rotations and translations [1].

This implementation is based on the reference implementation by Madry et al.: https://github.com/MadryLab/
adversarial_spatial

References

[Rdffd25498f9d-1]

__call__(self, input_or_adv, label=None, unpack=True, do_rotations=True, do_translations=True,
x_shift_limits=(-5, 5), y_shift_limits=(-5, 5), angular_limits=(-5, 5), granularity=10, ran-
dom_sampling=False, abort_early=True)

Adversarially chosen rotations and translations.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

50 Chapter 1. Robust Vision Benchmark

https://github.com/MadryLab/adversarial_spatial
https://github.com/MadryLab/adversarial_spatial

Foolbox Documentation, Release 1.8.0

do_rotations [bool] If False no rotations will be applied to the image.

do_translations [bool] If False no translations will be applied to the image.

x_shift_limits [int or (int, int)] Limits for horizontal translations in pixels. If one integer is
provided the limits will be (-x_shift_limits, x_shift_limits).

y_shift_limits [int or (int, int)] Limits for vertical translations in pixels. If one integer is
provided the limits will be (-y_shift_limits, y_shift_limits).

angular_limits [int or (int, int)] Limits for rotations in degrees. If one integer is provided
the limits will be [-angular_limits, angular_limits].

granularity [int] Density of sampling within limits for each dimension.

random_sampling [bool] If True we sample translations/rotations randomly within limits,
otherwise we use a regular grid.

abort_early [bool] If True, the attack stops as soon as it finds an adversarial.

class foolbox.attacks.PointwiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Starts with an adversarial and performs a binary search between the adversarial and the original for each dimen-
sion of the input individually.

__call__(self, input_or_adv, label=None, unpack=True, starting_point=None, initializa-
tion_attack=None)

Starts with an adversarial and performs a binary search between the adversarial and the original for each
dimension of the input individually.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

starting_point [numpy.ndarray] Adversarial input to use as a starting point, in particular for
targeted attacks.

initialization_attack [Attack] Attack to use to find a starting point. Defaults to SaltAnd-
PepperNoiseAttack.

class foolbox.attacks.GaussianBlurAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None)

Blurs the image until it is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)
Blurs the image until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

1.12. foolbox.attacks 51

Foolbox Documentation, Release 1.8.0

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of standard deviations of the Gaussian blur or
number of standard deviations between 0 and 1 that should be tried.

class foolbox.attacks.ContrastReductionAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Reduces the contrast of the image until it is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)
Reduces the contrast of the image until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of contrast levels or number of contrast levels
between 1 and 0 that should be tried. Epsilons are one minus the contrast level.

class foolbox.attacks.AdditiveUniformNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Adds uniform noise to the image, gradually increasing the standard deviation until the image is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)
Adds uniform or Gaussian noise to the image, gradually increasing the standard deviation until the image
is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of noise levels or number of noise levels be-
tween 0 and 1 that should be tried.

__class__
alias of abc.ABCMeta

__delattr__(self, name, /)
Implement delattr(self, name).

__dir__()
default dir() implementation

52 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

__eq__(self, value, /)
Return self==value.

__format__()
default object formatter

__ge__(self, value, /)
Return self>=value.

__getattribute__(self, name, /)
Return getattr(self, name).

__gt__(self, value, /)
Return self>value.

__hash__(self, /)
Return hash(self).

__init__(self, model=None, criterion=<foolbox.criteria.Misclassification object at
0x7fdb53218908>, distance=<class ’foolbox.distances.MeanSquaredDistance’>, thresh-
old=None)

Initialize self. See help(type(self)) for accurate signature.

__le__(self, value, /)
Return self<=value.

__lt__(self, value, /)
Return self<value.

__ne__(self, value, /)
Return self!=value.

__new__(*args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__(self, /)
Return repr(self).

__setattr__(self, name, value, /)
Implement setattr(self, name, value).

__sizeof__()
size of object in memory, in bytes

__str__(self, /)
Return str(self).

__subclasshook__()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

1.12. foolbox.attacks 53

Foolbox Documentation, Release 1.8.0

name(self)
Returns a human readable name that uniquely identifies the attack with its hyperparameters.

Returns

str Human readable name that uniquely identifies the attack with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.attacks.AdditiveGaussianNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Adds Gaussian noise to the image, gradually increasing the standard deviation until the image is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)
Adds uniform or Gaussian noise to the image, gradually increasing the standard deviation until the image
is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of noise levels or number of noise levels be-
tween 0 and 1 that should be tried.

__class__
alias of abc.ABCMeta

__delattr__(self, name, /)
Implement delattr(self, name).

__dir__()
default dir() implementation

__eq__(self, value, /)
Return self==value.

__format__()
default object formatter

__ge__(self, value, /)
Return self>=value.

__getattribute__(self, name, /)
Return getattr(self, name).

__gt__(self, value, /)
Return self>value.

__hash__(self, /)
Return hash(self).

54 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

__init__(self, model=None, criterion=<foolbox.criteria.Misclassification object at
0x7fdb53218908>, distance=<class ’foolbox.distances.MeanSquaredDistance’>, thresh-
old=None)

Initialize self. See help(type(self)) for accurate signature.

__le__(self, value, /)
Return self<=value.

__lt__(self, value, /)
Return self<value.

__ne__(self, value, /)
Return self!=value.

__new__(*args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__(self, /)
Return repr(self).

__setattr__(self, name, value, /)
Implement setattr(self, name, value).

__sizeof__()
size of object in memory, in bytes

__str__(self, /)
Return str(self).

__subclasshook__()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

name(self)
Returns a human readable name that uniquely identifies the attack with its hyperparameters.

Returns

str Human readable name that uniquely identifies the attack with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more descriptive names and must take hyperparam-
eters into account.

class foolbox.attacks.SaltAndPepperNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

1.12. foolbox.attacks 55

Foolbox Documentation, Release 1.8.0

Increases the amount of salt and pepper noise until the image is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, repetitions=10)
Increases the amount of salt and pepper noise until the image is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int] Number of steps to try between probability 0 and 1.

repetitions [int] Specifies how often the attack will be repeated.

class foolbox.attacks.BlendedUniformNoiseAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

Blends the image with a uniform noise image until it is misclassified.

__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_directions=1000)
Blends the image with a uniform noise image until it is misclassified.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

epsilons [int or Iterable[float]] Either Iterable of blending steps or number of blending steps
between 0 and 1 that should be tried.

max_directions [int] Maximum number of random images to try.

1.12.4 Other attacks

class foolbox.attacks.BinarizationRefinementAttack(model=None, crite-
rion=<foolbox.criteria.Misclassification
object>, distance=<class ’fool-
box.distances.MeanSquaredDistance’>,
threshold=None)

For models that preprocess their inputs by binarizing the inputs, this attack can improve adversarials found by
other attacks. It does os by utilizing information about the binarization and mapping values to the corresponding
value in the clean input or to the right side of the threshold.

__call__(self, input_or_adv, label=None, unpack=True, starting_point=None, threshold=None, in-
cluded_in=’upper’)

For models that preprocess their inputs by binarizing the inputs, this attack can improve adversarials found
by other attacks. It does os by utilizing information about the binarization and mapping values to the
corresponding value in the clean input or to the right side of the threshold.

Parameters

56 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

starting_point [numpy.ndarray] Adversarial input to use as a starting point.

threshold [float] The treshold used by the models binarization. If none, defaults to
(model.bounds()[1] - model.bounds()[0]) / 2.

included_in [str] Whether the threshold value itself belongs to the lower or upper interval.

class foolbox.attacks.PrecomputedImagesAttack(input_images, output_images, *args,
**kwargs)

Attacks a model using precomputed adversarial candidates.

Parameters

input_images [numpy.ndarray] The original images that will be expected by this attack.

output_images [numpy.ndarray] The adversarial candidates corresponding to the in-
put_images.

*args [positional args] Poistional args passed to the Attack base class.

**kwargs [keyword args] Keyword args passed to the Attack base class.

__call__(self, input_or_adv, label=None, unpack=True)
Attacks a model using precomputed adversarial candidates.

Parameters

input_or_adv [numpy.ndarray or Adversarial] The original, unperturbed input as a
numpy.ndarray or an Adversarial instance.

label [int] The reference label of the original input. Must be passed if a is a numpy.ndarray,
must not be passed if a is an Adversarial instance.

unpack [bool] If true, returns the adversarial input, otherwise returns the Adversarial object.

__init__(self, input_images, output_images, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

Gradient-based attacks

GradientAttack Perturbs the image with the gradient of the loss w.r.t.
GradientSignAttack Adds the sign of the gradient to the image, gradually in-

creasing the magnitude until the image is misclassified.
FGSM alias of foolbox.attacks.gradient.

GradientSignAttack
LinfinityBasicIterativeAttack The Basic Iterative Method introduced in

[R37dbc8f24aee-1].
BasicIterativeMethod alias of foolbox.attacks.

iterative_projected_gradient.
LinfinityBasicIterativeAttack

Continued on next page

1.12. foolbox.attacks 57

Foolbox Documentation, Release 1.8.0

Table 8 – continued from previous page
BIM alias of foolbox.attacks.

iterative_projected_gradient.
LinfinityBasicIterativeAttack

L1BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L1 distance.

L2BasicIterativeAttack Modified version of the Basic Iterative Method that min-
imizes the L2 distance.

ProjectedGradientDescentAttack The Projected Gradient Descent Attack introduced in
[R367e8e10528a-1] without random start.

ProjectedGradientDescent alias of foolbox.attacks.
iterative_projected_gradient.
ProjectedGradientDescentAttack

PGD alias of foolbox.attacks.
iterative_projected_gradient.
ProjectedGradientDescentAttack

RandomStartProjectedGradientDescentAttackThe Projected Gradient Descent Attack introduced in
[Re6066bc39e14-1] with random start.

RandomProjectedGradientDescent alias of foolbox.attacks.
iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

RandomPGD alias of foolbox.attacks.
iterative_projected_gradient.
RandomStartProjectedGradientDescentAttack

MomentumIterativeAttack The Momentum Iterative Method attack introduced in
[R86d363e1fb2f-1].

MomentumIterativeMethod alias of foolbox.attacks.
iterative_projected_gradient.
MomentumIterativeAttack

LBFGSAttack Uses L-BFGS-B to minimize the distance between the
image and the adversarial as well as the cross-entropy
between the predictions for the adversarial and the the
one-hot encoded target class.

DeepFoolAttack Simple and close to optimal gradient-based adversarial
attack.

NewtonFoolAttack Implements the NewtonFool Attack.
DeepFoolL2Attack
DeepFoolLinfinityAttack
ADefAttack Adversarial attack that distorts the image, i.e.
SLSQPAttack Uses SLSQP to minimize the distance between the im-

age and the adversarial under the constraint that the im-
age is adversarial.

SaliencyMapAttack Implements the Saliency Map Attack.
IterativeGradientAttack Like GradientAttack but with several steps for each ep-

silon.
IterativeGradientSignAttack Like GradientSignAttack but with several steps for each

epsilon.
CarliniWagnerL2Attack The L2 version of the Carlini & Wagner attack.

Score-based attacks

58 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

SinglePixelAttack Perturbs just a single pixel and sets it to the min or max.
LocalSearchAttack A black-box attack based on the idea of greedy local

search.
ApproximateLBFGSAttack Same as LBFGSAttack with approximate_gradient

set to True.

Decision-based attacks

BoundaryAttack A powerful adversarial attack that requires neither gra-
dients nor probabilities.

SpatialAttack Adversarially chosen rotations and translations [1].
PointwiseAttack Starts with an adversarial and performs a binary search

between the adversarial and the original for each dimen-
sion of the input individually.

GaussianBlurAttack Blurs the image until it is misclassified.
ContrastReductionAttack Reduces the contrast of the image until it is misclassi-

fied.
AdditiveUniformNoiseAttack Adds uniform noise to the image, gradually increasing

the standard deviation until the image is misclassified.
AdditiveGaussianNoiseAttack Adds Gaussian noise to the image, gradually increasing

the standard deviation until the image is misclassified.
SaltAndPepperNoiseAttack Increases the amount of salt and pepper noise until the

image is misclassified.
BlendedUniformNoiseAttack Blends the image with a uniform noise image until it is

misclassified.

Other attacks

BinarizationRefinementAttack For models that preprocess their inputs by binarizing
the inputs, this attack can improve adversarials found
by other attacks.

PrecomputedImagesAttack Attacks a model using precomputed adversarial candi-
dates.

1.13 foolbox.adversarial

Provides a class that represents an adversarial example.

class foolbox.adversarial.Adversarial(model, criterion, original_image, orig-
inal_class, distance=<class ’fool-
box.distances.MeanSquaredDistance’>, thresh-
old=None, verbose=False)

Defines an adversarial that should be found and stores the result.

The Adversarial class represents a single adversarial example for a given model, criterion and reference
image. It can be passed to an adversarial attack to find the actual adversarial.

Parameters

model [a Model instance] The model that should be fooled by the adversarial.

criterion [a Criterion instance] The criterion that determines which images are adversarial.

1.13. foolbox.adversarial 59

Foolbox Documentation, Release 1.8.0

original_image [a numpy.ndarray] The original image to which the adversarial image
should be as close as possible.

original_class [int] The ground-truth label of the original image.

distance [a Distance class] The measure used to quantify similarity between images.

threshold [float or Distance] If not None, the attack will stop as soon as the adversarial per-
turbation has a size smaller than this threshold. Can be an instance of the Distance class
passed to the distance argument, or a float assumed to have the same unit as the the given
distance. If None, the attack will simply minimize the distance as good as possible. Note
that the threshold only influences early stopping of the attack; the returned adversarial does
not necessarily have smaller perturbation size than this threshold; the reached_threshold()
method can be used to check if the threshold has been reached.

adversarial_class
The argmax of the model predictions for the best adversarial found so far.

None if no adversarial has been found.

batch_predictions(self, images, greedy=False, strict=True, return_details=False)
Interface to model.batch_predictions for attacks.

Parameters

images [numpy.ndarray] Batch of images with shape (batch size, height, width, channels).

greedy [bool] Whether the first adversarial should be returned.

strict [bool] Controls if the bounds for the pixel values should be checked.

channel_axis(self, batch)
Interface to model.channel_axis for attacks.

Parameters

batch [bool] Controls whether the index of the axis for a batch of images (4 dimensions) or
a single image (3 dimensions) should be returned.

distance
The distance of the adversarial input to the original input.

gradient(self, image=None, label=None, strict=True)
Interface to model.gradient for attacks.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels). Defaults to the original
image.

label [int] Label used to calculate the loss that is differentiated. Defaults to the original
label.

strict [bool] Controls if the bounds for the pixel values should be checked.

has_gradient(self)
Returns true if _backward and _forward_backward can be called by an attack, False otherwise.

image
The best adversarial found so far.

normalized_distance(self, image)
Calculates the distance of a given image to the original image.

Parameters

60 Chapter 1. Robust Vision Benchmark

Foolbox Documentation, Release 1.8.0

image [numpy.ndarray] The image that should be compared to the original image.

Returns

Distance The distance between the given image and the original image.

original_class
The class of the original input (ground-truth, not model prediction).

original_image
The original input.

output
The model predictions for the best adversarial found so far.

None if no adversarial has been found.

predictions(self, image, strict=True, return_details=False)
Interface to model.predictions for attacks.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels).

strict [bool] Controls if the bounds for the pixel values should be checked.

predictions_and_gradient(self, image=None, label=None, strict=True, return_details=False)
Interface to model.predictions_and_gradient for attacks.

Parameters

image [numpy.ndarray] Image with shape (height, width, channels). Defaults to the original
image.

label [int] Label used to calculate the loss that is differentiated. Defaults to the original
label.

strict [bool] Controls if the bounds for the pixel values should be checked.

reached_threshold(self)
Returns True if a threshold is given and the currently best adversarial distance is smaller than the threshold.

target_class(self)
Interface to criterion.target_class for attacks.

1.14 foolbox.utils

foolbox.utils.softmax(logits)
Transforms predictions into probability values.

Parameters

logits [array_like] The logits predicted by the model.

Returns

numpy.ndarray Probability values corresponding to the logits.

foolbox.utils.crossentropy(label, logits)
Calculates the cross-entropy.

Parameters

logits [array_like] The logits predicted by the model.

1.14. foolbox.utils 61

Foolbox Documentation, Release 1.8.0

label [int] The label describing the target distribution.

Returns

float The cross-entropy between softmax(logits) and onehot(label).

foolbox.utils.batch_crossentropy(label, logits)
Calculates the cross-entropy for a batch of logits.

Parameters

logits [array_like] The logits predicted by the model for a batch of inputs.

label [int] The label describing the target distribution.

Returns

np.ndarray The cross-entropy between softmax(logits[i]) and onehot(label) for all i.

foolbox.utils.binarize(x, values, threshold=None, included_in=’upper’)
Binarizes the values of x.

Parameters

values [tuple of two floats] The lower and upper value to which the inputs are mapped.

threshold [float] The threshold; defaults to (values[0] + values[1]) / 2 if None.

included_in [str] Whether the threshold value itself belongs to the lower or upper interval.

foolbox.utils.imagenet_example(shape=(224, 224), data_format=’channels_last’)
Returns an example image and its imagenet class label.

Parameters

shape [list of integers] The shape of the returned image.

data_format [str] “channels_first” or “channels_last”

Returns

image [array_like] The example image.

label [int] The imagenet label associated with the image.

foolbox.utils.onehot_like(a, index, value=1)
Creates an array like a, with all values set to 0 except one.

Parameters

a [array_like] The returned one-hot array will have the same shape and dtype as this array

index [int] The index that should be set to value

value [single value compatible with a.dtype] The value to set at the given index

Returns

numpy.ndarray One-hot array with the given value at the given location and zeros everywhere
else.

62 Chapter 1. Robust Vision Benchmark

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

63

Foolbox Documentation, Release 1.8.0

64 Chapter 2. Indices and tables

Bibliography

[R20d0064ee4c9-1] Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy, “Explaining and Harnessing Adversarial
Examples”, https://arxiv.org/abs/1412.6572

[R37dbc8f24aee-1] Alexey Kurakin, Ian Goodfellow, Samy Bengio, “Adversarial examples in the physical world”,

https://arxiv.org/abs/1607.02533

[R367e8e10528a-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[Re6066bc39e14-1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu, “To-
wards Deep Learning Models Resistant to Adversarial Attacks”, https://arxiv.org/abs/1706.06083

[R86d363e1fb2f-1] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, Jianguo Li, “Boost-
ing Adversarial Attacks with Momentum”, https://arxiv.org/abs/1710.06081

[Rf3ff9c7ff5d3-1] https://arxiv.org/abs/1510.05328

[Rb4dd02640756-1] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard, “DeepFool: a simple and
accurate method to fool deep neural networks”, https://arxiv.org/abs/1511.04599

[R6a972939b320-1] Uyeong Jang et al., “Objective Metrics and Gradient Descent Algorithms for Adversarial Exam-
ples in Machine Learning”, https://dl.acm.org/citation.cfm?id=3134635

[R08e06ca693ba-1] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, Ananthram
Swami, “The Limitations of Deep Learning in Adversarial Settings”, https://arxiv.org/abs/1511.07528

[Rc2cb572b91c5-1] Nicholas Carlini, David Wagner: “Towards Evaluating the Robustness of Neural Networks”,
https://arxiv.org/abs/1608.04644

[Rc2cb572b91c5-2] https://github.com/carlini/nn_robust_attacks

[Rb320cee6998a-1] Nina Narodytska, Shiva Prasad Kasiviswanathan, “Simple Black-Box Adversarial Perturbations
for Deep Networks”, https://arxiv.org/abs/1612.06299

[Re72ca268aa55-1] Wieland Brendel (*), Jonas Rauber (*), Matthias Bethge, “Decision-Based Adversarial Attacks:
Reliable Attacks Against Black-Box Machine Learning Models”, https://arxiv.org/abs/1712.04248

[Rdffd25498f9d-1] Logan Engstrom*, Brandon Tran*, Dimitris Tsipras*, Ludwig Schmidt, Aleksander Mądry: “A
Rotation and a Translation Suffice: Fooling CNNs with Simple Transformations”, http://arxiv.org/abs/
1712.02779

65

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1710.06081
https://arxiv.org/abs/1510.05328
https://arxiv.org/abs/1511.04599
https://dl.acm.org/citation.cfm?id=3134635
https://arxiv.org/abs/1511.07528
https://arxiv.org/abs/1608.04644
https://github.com/carlini/nn_robust_attacks
https://arxiv.org/abs/1612.06299
https://arxiv.org/abs/1712.04248
http://arxiv.org/abs/1712.02779
http://arxiv.org/abs/1712.02779

Foolbox Documentation, Release 1.8.0

66 Bibliography

Python Module Index

f
foolbox.adversarial, 59
foolbox.attacks, 36
foolbox.criteria, 28
foolbox.distances, 35
foolbox.models, 11
foolbox.utils, 61
foolbox.zoo, 34

67

Foolbox Documentation, Release 1.8.0

68 Python Module Index

Index

Symbols
__call__() (foolbox.attacks.ADefAttack method), 45
__call__() (foolbox.attacks.AdditiveGaussianNoiseAttack

method), 54
__call__() (foolbox.attacks.AdditiveUniformNoiseAttack

method), 52
__call__() (foolbox.attacks.BinarizationRefinementAttack

method), 56
__call__() (foolbox.attacks.BlendedUniformNoiseAttack

method), 56
__call__() (foolbox.attacks.BoundaryAttack

method), 49
__call__() (foolbox.attacks.CarliniWagnerL2Attack

method), 47
__call__() (foolbox.attacks.ContrastReductionAttack

method), 52
__call__() (foolbox.attacks.DeepFoolAttack

method), 43
__call__() (foolbox.attacks.DeepFoolL2Attack

method), 44
__call__() (foolbox.attacks.DeepFoolLinfinityAttack

method), 44
__call__() (foolbox.attacks.GaussianBlurAttack

method), 51
__call__() (foolbox.attacks.GradientAttack method),

36
__call__() (foolbox.attacks.GradientSignAttack

method), 36
__call__() (foolbox.attacks.IterativeGradientAttack

method), 46
__call__() (foolbox.attacks.IterativeGradientSignAttack

method), 46
__call__() (foolbox.attacks.L1BasicIterativeAttack

method), 38
__call__() (foolbox.attacks.L2BasicIterativeAttack

method), 39
__call__() (foolbox.attacks.LBFGSAttack method),

42
__call__() (foolbox.attacks.LinfinityBasicIterativeAttack

method), 37
__call__() (foolbox.attacks.LocalSearchAttack

method), 48
__call__() (foolbox.attacks.MomentumIterativeAttack

method), 41
__call__() (foolbox.attacks.NewtonFoolAttack

method), 43
__call__() (foolbox.attacks.PointwiseAttack method),

51
__call__() (foolbox.attacks.PrecomputedImagesAttack

method), 57
__call__() (foolbox.attacks.ProjectedGradientDescentAttack

method), 39
__call__() (foolbox.attacks.RandomStartProjectedGradientDescentAttack

method), 40
__call__() (foolbox.attacks.SLSQPAttack method),

45
__call__() (foolbox.attacks.SaliencyMapAttack

method), 45
__call__() (foolbox.attacks.SaltAndPepperNoiseAttack

method), 56
__call__() (foolbox.attacks.SinglePixelAttack

method), 48
__call__() (foolbox.attacks.SpatialAttack method),

50
__class__ (foolbox.attacks.AdditiveGaussianNoiseAttack

attribute), 54
__class__ (foolbox.attacks.AdditiveUniformNoiseAttack

attribute), 52
__delattr__ (foolbox.attacks.AdditiveGaussianNoiseAttack

attribute), 54
__delattr__ (foolbox.attacks.AdditiveUniformNoiseAttack

attribute), 52
__dir__() (foolbox.attacks.AdditiveGaussianNoiseAttack

method), 54
__dir__() (foolbox.attacks.AdditiveUniformNoiseAttack

method), 52
__eq__ (foolbox.attacks.AdditiveGaussianNoiseAttack

attribute), 54
__eq__ (foolbox.attacks.AdditiveUniformNoiseAttack

69

Foolbox Documentation, Release 1.8.0

attribute), 52
__format__() (fool-

box.attacks.AdditiveGaussianNoiseAttack
method), 54

__format__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 53

__ge__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 54

__ge__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__getattribute__ (fool-
box.attacks.AdditiveGaussianNoiseAttack
attribute), 54

__getattribute__ (fool-
box.attacks.AdditiveUniformNoiseAttack
attribute), 53

__gt__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 54

__gt__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__hash__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 54

__hash__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__init__() (foolbox.attacks.AdditiveGaussianNoiseAttack
method), 54

__init__() (foolbox.attacks.AdditiveUniformNoiseAttack
method), 53

__init__() (foolbox.attacks.ApproximateLBFGSAttack
method), 49

__init__() (foolbox.attacks.LBFGSAttack method),
42

__init__() (foolbox.attacks.PrecomputedImagesAttack
method), 57

__le__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 55

__le__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__lt__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 55

__lt__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__ne__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 55

__ne__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__new__() (foolbox.attacks.AdditiveGaussianNoiseAttack
method), 55

__new__() (foolbox.attacks.AdditiveUniformNoiseAttack
method), 53

__reduce__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 55

__reduce__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 53

__reduce_ex__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 55

__reduce_ex__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 53

__repr__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 55

__repr__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__setattr__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 55

__setattr__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__sizeof__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 55

__sizeof__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 53

__str__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 55

__str__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

__subclasshook__() (fool-
box.attacks.AdditiveGaussianNoiseAttack
method), 55

__subclasshook__() (fool-
box.attacks.AdditiveUniformNoiseAttack
method), 53

__weakref__ (foolbox.attacks.AdditiveGaussianNoiseAttack
attribute), 55

__weakref__ (foolbox.attacks.AdditiveUniformNoiseAttack
attribute), 53

A
AdditiveGaussianNoiseAttack (class in fool-

box.attacks), 54
AdditiveUniformNoiseAttack (class in fool-

box.attacks), 52
ADefAttack (class in foolbox.attacks), 44
Adversarial (class in foolbox.adversarial), 59
adversarial_class (fool-

box.adversarial.Adversarial attribute), 60
ApproximateLBFGSAttack (class in fool-

box.attacks), 49

B
backward() (foolbox.models.CompositeModel

method), 27

70 Index

Foolbox Documentation, Release 1.8.0

backward() (foolbox.models.DifferentiableModel
method), 13

backward() (foolbox.models.KerasModel method), 19
backward() (foolbox.models.LasagneModel method),

22
backward() (foolbox.models.MXNetGluonModel

method), 24
backward() (foolbox.models.MXNetModel method),

23
backward() (foolbox.models.PyTorchModel method),

18
backward() (foolbox.models.TensorFlowEagerModel

method), 16
backward() (foolbox.models.TensorFlowModel

method), 14
backward() (foolbox.models.TheanoModel method),

20
BasicIterativeMethod (in module fool-

box.attacks), 38
batch_crossentropy() (in module foolbox.utils),

62
batch_predictions() (fool-

box.adversarial.Adversarial method), 60
batch_predictions() (fool-

box.models.CompositeModel method), 27
batch_predictions() (fool-

box.models.KerasModel method), 19
batch_predictions() (fool-

box.models.LasagneModel method), 22
batch_predictions() (foolbox.models.Model

method), 12
batch_predictions() (fool-

box.models.ModelWrapper method), 26
batch_predictions() (fool-

box.models.MXNetGluonModel method),
25

batch_predictions() (fool-
box.models.MXNetModel method), 24

batch_predictions() (fool-
box.models.PyTorchModel method), 18

batch_predictions() (fool-
box.models.TensorFlowEagerModel method),
17

batch_predictions() (fool-
box.models.TensorFlowModel method),
15

batch_predictions() (fool-
box.models.TheanoModel method), 20

best_other_class() (fool-
box.attacks.CarliniWagnerL2Attack static
method), 47

BIM (in module foolbox.attacks), 38
BinarizationRefinementAttack (class in fool-

box.attacks), 56

binarize() (in module foolbox.utils), 62
BlendedUniformNoiseAttack (class in fool-

box.attacks), 56
BoundaryAttack (class in foolbox.attacks), 49

C
CarliniWagnerL2Attack (class in foolbox.attacks),

47
channel_axis() (foolbox.adversarial.Adversarial

method), 60
CompositeModel (class in foolbox.models), 27
ConfidentMisclassification (class in fool-

box.criteria), 30
ContrastReductionAttack (class in fool-

box.attacks), 52
Criterion (class in foolbox.criteria), 29
crossentropy() (in module foolbox.utils), 61

D
DeepFoolAttack (class in foolbox.attacks), 43
DeepFoolL2Attack (class in foolbox.attacks), 44
DeepFoolLinfinityAttack (class in fool-

box.attacks), 44
DifferentiableModel (class in foolbox.models), 13
DifferentiableModelWrapper (class in fool-

box.models), 26
Distance (class in foolbox.distances), 35
distance (foolbox.adversarial.Adversarial attribute),

60

F
fetch_weights() (in module foolbox.zoo), 34
FGSM (in module foolbox.attacks), 37
foolbox.adversarial (module), 59
foolbox.attacks (module), 36
foolbox.criteria (module), 28
foolbox.distances (module), 35
foolbox.models (module), 11
foolbox.utils (module), 61
foolbox.zoo (module), 34
from_keras() (foolbox.models.TensorFlowModel

class method), 15

G
GaussianBlurAttack (class in foolbox.attacks), 51
get_model() (in module foolbox.zoo), 34
gradient() (foolbox.adversarial.Adversarial

method), 60
gradient() (foolbox.models.CompositeModel

method), 27
gradient() (foolbox.models.DifferentiableModel

method), 13
gradient() (foolbox.models.LasagneModel method),

22

Index 71

Foolbox Documentation, Release 1.8.0

gradient() (foolbox.models.TensorFlowModel
method), 15

gradient() (foolbox.models.TheanoModel method),
21

GradientAttack (class in foolbox.attacks), 36
GradientSignAttack (class in foolbox.attacks), 36

H
has_gradient() (foolbox.adversarial.Adversarial

method), 60

I
image (foolbox.adversarial.Adversarial attribute), 60
imagenet_example() (in module foolbox.utils), 62
is_adversarial() (fool-

box.criteria.ConfidentMisclassification
method), 30

is_adversarial() (foolbox.criteria.Criterion
method), 29

is_adversarial() (fool-
box.criteria.Misclassification method), 30

is_adversarial() (fool-
box.criteria.OriginalClassProbability method),
32

is_adversarial() (foolbox.criteria.TargetClass
method), 32

is_adversarial() (fool-
box.criteria.TargetClassProbability method),
33

is_adversarial() (fool-
box.criteria.TopKMisclassification method),
31

IterativeGradientAttack (class in fool-
box.attacks), 46

IterativeGradientSignAttack (class in fool-
box.attacks), 46

K
KerasModel (class in foolbox.models), 19

L
L0 (class in foolbox.distances), 35
L1BasicIterativeAttack (class in fool-

box.attacks), 38
L2BasicIterativeAttack (class in fool-

box.attacks), 38
LasagneModel (class in foolbox.models), 21
LBFGSAttack (class in foolbox.attacks), 42
Linf (in module foolbox.distances), 36
Linfinity (class in foolbox.distances), 35
LinfinityBasicIterativeAttack (class in fool-

box.attacks), 37
LocalSearchAttack (class in foolbox.attacks), 48

loss_function() (fool-
box.attacks.CarliniWagnerL2Attack class
method), 48

M
MAE (in module foolbox.distances), 35
MeanAbsoluteDistance (class in fool-

box.distances), 35
MeanSquaredDistance (class in foolbox.distances),

35
Misclassification (class in foolbox.criteria), 30
Model (class in foolbox.models), 12
ModelWithEstimatedGradients (class in fool-

box.models), 26
ModelWithoutGradients (class in foolbox.models),

26
ModelWrapper (class in foolbox.models), 25
MomentumIterativeAttack (class in fool-

box.attacks), 41
MomentumIterativeMethod (in module fool-

box.attacks), 42
MSE (in module foolbox.distances), 35
MXNetGluonModel (class in foolbox.models), 24
MXNetModel (class in foolbox.models), 23

N
name() (foolbox.attacks.AdditiveGaussianNoiseAttack

method), 55
name() (foolbox.attacks.AdditiveUniformNoiseAttack

method), 53
name() (foolbox.attacks.LBFGSAttack method), 42
name() (foolbox.criteria.ConfidentMisclassification

method), 31
name() (foolbox.criteria.Criterion method), 29
name() (foolbox.criteria.Misclassification method), 30
name() (foolbox.criteria.OriginalClassProbability

method), 33
name() (foolbox.criteria.TargetClass method), 32
name() (foolbox.criteria.TargetClassProbability

method), 33
name() (foolbox.criteria.TopKMisclassification

method), 31
NewtonFoolAttack (class in foolbox.attacks), 43
normalized_distance() (fool-

box.adversarial.Adversarial method), 60
num_classes() (foolbox.models.CompositeModel

method), 28
num_classes() (foolbox.models.KerasModel

method), 19
num_classes() (foolbox.models.LasagneModel

method), 22
num_classes() (foolbox.models.Model method), 13
num_classes() (foolbox.models.ModelWrapper

method), 26

72 Index

Foolbox Documentation, Release 1.8.0

num_classes() (foolbox.models.MXNetGluonModel
method), 25

num_classes() (foolbox.models.MXNetModel
method), 24

num_classes() (foolbox.models.PyTorchModel
method), 18

num_classes() (fool-
box.models.TensorFlowEagerModel method),
17

num_classes() (foolbox.models.TensorFlowModel
method), 16

num_classes() (foolbox.models.TheanoModel
method), 21

O
onehot_like() (in module foolbox.utils), 62
original_class (foolbox.adversarial.Adversarial

attribute), 61
original_image (foolbox.adversarial.Adversarial

attribute), 61
OriginalClassProbability (class in fool-

box.criteria), 32
output (foolbox.adversarial.Adversarial attribute), 61

P
PointwiseAttack (class in foolbox.attacks), 51
PrecomputedImagesAttack (class in fool-

box.attacks), 57
predictions() (foolbox.adversarial.Adversarial

method), 61
predictions() (foolbox.models.Model method), 13
predictions() (foolbox.models.ModelWrapper

method), 26
predictions_and_gradient() (fool-

box.adversarial.Adversarial method), 61
predictions_and_gradient() (fool-

box.models.CompositeModel method), 28
predictions_and_gradient() (fool-

box.models.DifferentiableModel method),
14

predictions_and_gradient() (fool-
box.models.KerasModel method), 19

predictions_and_gradient() (fool-
box.models.LasagneModel method), 23

predictions_and_gradient() (fool-
box.models.MXNetGluonModel method),
25

predictions_and_gradient() (fool-
box.models.MXNetModel method), 24

predictions_and_gradient() (fool-
box.models.PyTorchModel method), 18

predictions_and_gradient() (fool-
box.models.TensorFlowEagerModel method),
17

predictions_and_gradient() (fool-
box.models.TensorFlowModel method),
16

predictions_and_gradient() (fool-
box.models.TheanoModel method), 21

ProjectedGradientDescent (in module fool-
box.attacks), 40

ProjectedGradientDescentAttack (class in
foolbox.attacks), 39

PyTorchModel (class in foolbox.models), 17

R
RandomPGD (in module foolbox.attacks), 41
RandomProjectedGradientDescent (in module

foolbox.attacks), 41
RandomStartProjectedGradientDescentAttack

(class in foolbox.attacks), 40
reached_threshold() (fool-

box.adversarial.Adversarial method), 61

S
SaliencyMapAttack (class in foolbox.attacks), 45
SaltAndPepperNoiseAttack (class in fool-

box.attacks), 55
SinglePixelAttack (class in foolbox.attacks), 48
SLSQPAttack (class in foolbox.attacks), 45
softmax() (in module foolbox.utils), 61
SpatialAttack (class in foolbox.attacks), 50

T
target_class() (foolbox.adversarial.Adversarial

method), 61
TargetClass (class in foolbox.criteria), 31
TargetClassProbability (class in fool-

box.criteria), 33
TensorFlowEagerModel (class in foolbox.models),

16
TensorFlowModel (class in foolbox.models), 14
TheanoModel (class in foolbox.models), 20
TopKMisclassification (class in fool-

box.criteria), 31

Index 73

	Robust Vision Benchmark
	Installation
	Tutorial
	Examples
	Advanced
	Model Zoo
	Development
	FAQ
	foolbox.models
	foolbox.criteria
	foolbox.zoo
	foolbox.distances
	foolbox.attacks
	foolbox.adversarial
	foolbox.utils

	Indices and tables
	Bibliography
	Python Module Index
	Index

