

Welcome to Foolbox

Foolbox is a Python toolbox to create adversarial examples that fool neural networks.

It comes with support for many frameworks to build models including

	TensorFlow

	PyTorch

	Theano

	Keras

	Lasagne

	MXNet

and it is easy to extend to other frameworks.

In addition, it comes with a large collection of adversarial attacks, both gradient-based attacks as well as black-box attacks. See foolbox.attacks for details.

The source code and a minimal working example [https://github.com/bethgelab/foolbox#example] can be found on GitHub [https://github.com/bethgelab/foolbox].

Robust Vision Benchmark

[image: _images/benchmark_banner.png]
 [https://robust.vision/benchmark]You might want to have a look at our recently announced Robust Vision Benchmark [https://robust.vision/benchmark], a benchmark for adversarial attacks and the robustness of machine learning models.

User Guide

	Installation
	Stable release

	Development version

	Contributing to Foolbox

	Tutorial
	Creating a model

	Specifying the criterion

	Running the attack

	Visualizing the adversarial examples

	Examples
	Creating a model

	Applying an attack

	Creating an untargeted adversarial for a PyTorch model

	Creating a targeted adversarial for the Keras ResNet model

	Advanced
	Implicit

	Explicit

	Model Zoo
	Downloading a model

	Development
	Running Tests

	New Adversarial Attacks

	FAQ

API Reference

	foolbox.models
	Models

	Wrappers

	Detailed description

	foolbox.criteria
	Criteria

	Examples

	Detailed description

	foolbox.zoo
	Get Model

	Fetch Weights

	foolbox.distances
	Distances

	Aliases

	Base class

	Detailed description

	foolbox.attacks

	foolbox.adversarial

	foolbox.utils

Indices and tables

	Index

	Module Index

	Search Page

Installation

Foolbox is a Python package to create adversarial examples. We test using Python 2.7, 3.5 and 3.6, but other versions of Python might work as well. We recommend using Python 3!.

Stable release

You can install the latest stable release of Foolbox from PyPI using pip:

pip install foolbox

Make sure that pip installs packages for Python 3, otherwise you might need to use pip3 instead of pip.

Development version

Alternatively, you can install the latest development version of Foolbox from GitHub. We try to keep the master branch stable, so this version should usually work fine. Feel free to open an issue on GitHub if you encounter any problems.

pip install https://github.com/bethgelab/foolbox/archive/master.zip

Contributing to Foolbox

If you would like to contribute the development of Foolbox, install it in editable mode:

git clone https://github.com/bethgelab/foolbox.git
cd foolbox
pip install --editable .

To contribute your changes, you will need to fork the Foolbox repository on GitHub.
You can than add it as a remote:

git remote rename origin upstream
git remote add origin https://github.com/<your-github-name>/foolbox.git

You can now commit your changes, push them to your fork and create a pull-request to
contribute them to Foolbox.

Tutorial

This tutorial will show you how an adversarial attack can be used to find adversarial examples for a model.

Creating a model

For the tutorial, we will target VGG19 implemented in TensorFlow, but it is straight forward to apply the same to other models or other frameworks such as Theano or PyTorch.

import tensorflow as tf

images = tf.placeholder(tf.float32, (None, 224, 224, 3))
preprocessed = vgg_preprocessing(images)
logits = vgg19(preprocessed)

To turn a model represented as a standard TensorFlow graph into a model that can be attacked by the Adversarial Toolbox, all we have to do is to create a new TensorFlowModel instance:

from foolbox.models import TensorFlowModel

model = TensorFlowModel(images, logits, bounds=(0, 255))

Specifying the criterion

To run an adversarial attack, we need to specify the type of adversarial we are looking for. This can be done using the Criterion class.

from foolbox.criteria import TargetClassProbability

target_class = 22
criterion = TargetClassProbability(target_class, p=0.99)

Running the attack

Finally, we can create and apply the attack:

from foolbox.attacks import LBFGSAttack

attack = LBFGSAttack(model, criterion)

image = np.asarray(Image.open('example.jpg'))
label = np.argmax(model.predictions(image))

adversarial = attack(image, label=label)

Visualizing the adversarial examples

To plot the adversarial example we can use matplotlib:

import matplotlib.pyplot as plt

plt.subplot(1, 3, 1)
plt.imshow(image)

plt.subplot(1, 3, 2)
plt.imshow(adversarial)

plt.subplot(1, 3, 3)
plt.imshow(adversarial - image)

Examples

Here you can find a collection of examples how Foolbox models can be created using different deep learning frameworks and some full-blown attack examples at the end.

Creating a model

Keras: ResNet50

import keras
import numpy as np
import foolbox

keras.backend.set_learning_phase(0)
kmodel = keras.applications.resnet50.ResNet50(weights='imagenet')
preprocessing = (np.array([104, 116, 123]), 1)
model = foolbox.models.KerasModel(kmodel, bounds=(0, 255), preprocessing=preprocessing)

image, label = foolbox.utils.imagenet_example()
::-1 reverses the color channels, because Keras ResNet50 expects BGR instead of RGB
print(np.argmax(model.predictions(image[:, :, ::-1])), label)

PyTorch: ResNet18

You might be interested in checking out the full PyTorch example at the end
of this document.

import torchvision.models as models
import numpy as np
import foolbox

instantiate the model
resnet18 = models.resnet18(pretrained=True).cuda().eval() # for CPU, remove cuda()
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
model = foolbox.models.PyTorchModel(resnet18, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))

image, label = foolbox.utils.imagenet_example(data_format='channels_first')
image = image / 255
print(np.argmax(model.predictions(image)), label)

TensorFlow: VGG19

First, create the model in TensorFlow.

import tensorflow as tf
from tensorflow.contrib.slim.nets import vgg
import numpy as np
import foolbox

images = tf.placeholder(tf.float32, shape=(None, 224, 224, 3))
preprocessed = images - [123.68, 116.78, 103.94]
logits, _ = vgg.vgg_19(preprocessed, is_training=False)
restorer = tf.train.Saver(tf.trainable_variables())

image, _ = foolbox.utils.imagenet_example()

Then transform it into a Foolbox model using one of these four options:

Option 1

This option is recommended if you want to keep the code as short as possible. It makes use
of the TensorFlow session created by Foolbox internally if no default session is set.

with foolbox.models.TensorFlowModel(images, logits, (0, 255)) as model:
 restorer.restore(model.session, '/path/to/vgg_19.ckpt')
 print(np.argmax(model.predictions(image)))

Option 2

This option is recommended if you want to create the TensorFlow session yourself.

with tf.Session() as session:
 restorer.restore(session, '/path/to/vgg_19.ckpt')
 model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
 print(np.argmax(model.predictions(image)))

Option 3

This option is recommended if you want to avoid nesting context managers, e.g. during interactive development.

session = tf.InteractiveSession()
restorer.restore(session, '/path/to/vgg_19.ckpt')
model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
print(np.argmax(model.predictions(image)))
session.close()

Option 4

This is possible, but usually one of the other options should be preferred.

session = tf.Session()
with session.as_default():
 restorer.restore(session, '/path/to/vgg_19.ckpt')
 model = foolbox.models.TensorFlowModel(images, logits, (0, 255))
 print(np.argmax(model.predictions(image)))
session.close()

Applying an attack

Once you created a Foolbox model (see the previous section), you can apply an attack.

FGSM (GradientSignAttack)

create a model (see previous section)
fmodel = ...

get source image and label
image, label = foolbox.utils.imagenet_example()

apply attack on source image
attack = foolbox.attacks.FGSM(fmodel)
adversarial = attack(image[:,:,::-1], label)

Creating an untargeted adversarial for a PyTorch model

import foolbox
import torch
import torchvision.models as models
import numpy as np

instantiate the model
resnet18 = models.resnet18(pretrained=True).eval()
if torch.cuda.is_available():
 resnet18 = resnet18.cuda()
mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
fmodel = foolbox.models.PyTorchModel(
 resnet18, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))

get source image and label
image, label = foolbox.utils.imagenet_example(data_format='channels_first')
image = image / 255. # because our model expects values in [0, 1]

print('label', label)
print('predicted class', np.argmax(fmodel.predictions(image)))

apply attack on source image
attack = foolbox.attacks.FGSM(fmodel)
adversarial = attack(image, label)

print('adversarial class', np.argmax(fmodel.predictions(adversarial)))

outputs

label 282
predicted class 282
adversarial class 281

To plot image and adversarial, don’t forget to move the channel
axis to the end before passing them to matplotlib’s imshow, e.g.
using np.transpose(image, (1, 2, 0)).

Creating a targeted adversarial for the Keras ResNet model

import foolbox
from foolbox.models import KerasModel
from foolbox.attacks import LBFGSAttack
from foolbox.criteria import TargetClassProbability
import numpy as np
import keras
from keras.applications.resnet50 import ResNet50
from keras.applications.resnet50 import preprocess_input
from keras.applications.resnet50 import decode_predictions

keras.backend.set_learning_phase(0)
kmodel = ResNet50(weights='imagenet')
preprocessing = (np.array([104, 116, 123]), 1)
fmodel = KerasModel(kmodel, bounds=(0, 255), preprocessing=preprocessing)

image, label = foolbox.utils.imagenet_example()

run the attack
attack = LBFGSAttack(model=fmodel, criterion=TargetClassProbability(781, p=.5))
adversarial = attack(image[:, :, ::-1], label)

show results
print(np.argmax(fmodel.predictions(adversarial)))
print(foolbox.utils.softmax(fmodel.predictions(adversarial))[781])
adversarial_rgb = adversarial[np.newaxis, :, :, ::-1]
preds = kmodel.predict(preprocess_input(adversarial_rgb.copy()))
print("Top 5 predictions (adversarial: ", decode_predictions(preds, top=5))

outputs

781
0.832095
Top 5 predictions (adversarial: [[('n04149813', 'scoreboard', 0.83013469), ('n03196217', 'digital_clock', 0.030192226), ('n04152593', 'screen', 0.016133979), ('n04141975', 'scale', 0.011708578), ('n03782006', 'monitor', 0.0091574294)]]

Advanced

The Adversarial class provides an advanced way to specify the adversarial example that should be found by an attack and provides detailed information about the created adversarial. In addition, it provides a way to improve a previously found adversarial example by re-running an attack.

Implicit

model = TensorFlowModel(images, logits, bounds=(0, 255))
criterion = TargetClassProbability('ostrich', p=0.99)
attack = LBFGSAttack(model, criterion)

Running the attack by passing image and label will
implicitly create an Adversarial instance. By
passing unpack=False we tell the attack to return the
Adversarial instance rather than the actual image.

adversarial = attack(image, label=label, unpack=False)

We can then get the actual image using the image attribute:

adversarial_image = adversarial.image

Explicit

model = TensorFlowModel(images, logits, bounds=(0, 255))
criterion = TargetClassProbability('ostrich', p=0.99)
attack = LBFGSAttack()

We can also create the Adversarial instance ourselves
and then pass it to the attack.

adversarial = Adversarial(model, criterion, image, label)
attack(adversarial)

Again, we can get the image using the image attribute:

adversarial_image = adversarial.image

This approach gives us more flexibility and allows us to specify
a different distance measure:

distance = MeanAbsoluteDistance
adversarial = Adversarial(model, criterion, image, label, distance=distance)

Model Zoo

This tutorial will show you how the model zoo can be used to run your attack against a robust model.

Downloading a model

For this tutorial, we will download the Madry et al. CIFAR10 challenge robust model implemented in TensorFlow
and run a FGSM (GradienSignAttack) against it.

from foolbox import zoo

download the model
model = zoo.get_model(url="https://github.com/bethgelab/cifar10_challenge.git")

read image and label
image = ...
label = ...

apply attack on source image
attack = foolbox.attacks.FGSM(model)
adversarial = attack(image[:,:,::-1], label)

Development

To install Foolbox in editable mode, see the installation instructions under Contributing to Foolbox.

Running Tests

pytest

To run the tests, you need to have pytest [https://docs.pytest.org/en/latest/getting-started.html] and pytest-cov [http://pytest-cov.readthedocs.io/en/latest/readme.html#installation] installed. Afterwards, you can simply run pytest in the root folder of the project. Some tests will require TensorFlow, PyTorch and the other frameworks, so to run all tests, you need to have all of them installed.

flake8

Foolbox follows the PEP 8 style guide for Python code [https://www.python.org/dev/peps/pep-0008/]. To check for violations, we use flake8 [http://flake8.pycqa.org/en/latest/] and run it like this:

flake8 --ignore E402,E741 .

New Adversarial Attacks

Foolbox makes it easy to develop new adversarial attacks that can be applied to arbitrary models.

To implement an attack, simply subclass the Attack class, implement the __call__() method and decorate it with the :decorator:`call_decorator`. The :decorator:`call_decorator` will make sure that your __call__() implementation will be called with an instance of the Adversarial class. You can use this instance to ask for model predictions and gradients, get the original image and its label and more. In addition, the Adversarial instance automatically keeps track of the best adversarial amongst all the images tested by the attack. That way, the implementation of the attack can focus on the attack logic.

FAQ

	How does Foolbox handle inputs that are misclassified without any perturbation?

	The attacks will not be run and instead the unperturbed input is returned as an adversarial with distance 0 to the clean input.

	What happens if an attack fails?

	The attack will return None and the distance will be np.inf.

	Why is the returned adversarial not misclassified by my model?

	Most likely you have a discrepancy between how you evaluate your model and how you told Foolbox to evaluate it. For example, you might not be using the same preprocessing. Compare the output of the predictions method of the Foolbox model instance with your model’s output (logits). This problem can also be caused by non-deterministic models. Make sure that your model is not stochastic and always returns the same output when given the same input. In rare cases it can also be that a seemlingly deterministic model becomes numerically stochastic around the decision boundary (e.g. because of non-deterministic floating point reduce_sum operations). You can always check adversarial.output and adversarial.adversarial_class to see the output Foolbox got from your model when deciding that this was an adversarial.

	Why are the gradients multiplied by the bounds (max_ - min_)?

	This scaling is meant to make hyperparameters such as the epsilon for FGSM independent of the bounds. epsilon = 0.1 thus means that you perturb the image by 10% relative to the max - max range (which could for example go from 0 to 1 or from 0 to 255).

foolbox.models

Provides classes to wrap existing models in different framworks so
that they provide a unified API to the attacks.

Models

	Model

	Base class to provide attacks with a unified interface to models.

	DifferentiableModel

	Base class for differentiable models that provide gradients.

	TensorFlowModel

	Creates a Model instance from existing TensorFlow tensors.

	TensorFlowEagerModel

	Creates a Model instance from a TensorFlow model using eager execution.

	PyTorchModel

	Creates a Model instance from a PyTorch module.

	KerasModel

	Creates a Model instance from a Keras model.

	TheanoModel

	Creates a Model instance from existing Theano tensors.

	LasagneModel

	Creates a Model instance from a Lasagne network.

	MXNetModel

	Creates a Model instance from existing MXNet symbols and weights.

	MXNetGluonModel

	Creates a Model instance from an existing MXNet Gluon Block.

Wrappers

	ModelWrapper

	Base class for models that wrap other models.

	DifferentiableModelWrapper

	Base class for models that wrap other models and provide gradient methods.

	ModelWithoutGradients

	Turns a model into a model without gradients.

	ModelWithEstimatedGradients

	Turns a model into a model with gradients estimated by the given gradient estimator.

	CompositeModel

	Combines predictions of a (black-box) model with the gradient of a (substitute) model.

Detailed description

	
class foolbox.models.Model(bounds, channel_axis, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/base.py#L50-L172]

	Base class to provide attacks with a unified interface to models.

The Model class represents a model and provides a
unified interface to its predictions. Subclasses must implement
batch_predictions and num_classes.

Model instances can be used as context managers and subclasses
can require this to allocate and release resources.

	Parameters

	
	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	channel_axisint

	The index of the axis that represents color channels.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/base.py#L119-L139]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/base.py#L162-L172]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions(self, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/base.py#L141-L160]

	Convenience method that calculates predictions for a single image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	numpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

See also

	batch_predictions()

	

	
class foolbox.models.DifferentiableModel(bounds, channel_axis, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/base.py#L175-L272]

	Base class for differentiable models that provide gradients.

The DifferentiableModel class can be used as a base
class for models that provide gradients. Subclasses must implement
predictions_and_gradient.

A model should be considered differentiable based on whether it
provides a predictions_and_gradient() method and a
gradient() method, not based on whether it subclasses
DifferentiableModel.

A differentiable model does not necessarily provide reasonable
values for the gradients, the gradient can be wrong. It only
guarantees that the relevant methods can be called.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/base.py#L249-L272]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/base.py#L221-L247]

	Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient.
Subclasses can provide more efficient implementations that
only calculate the gradient.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/base.py#L193-L219]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.TensorFlowModel(images, logits, bounds, channel_axis=3, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow.py#L9-L181]

	Creates a Model instance from existing TensorFlow tensors.

	Parameters

	
	imagestensorflow.Tensor

	The input to the model, usually a tensorflow.placeholder.

	logitstensorflow.Tensor

	The predictions of the model, before the softmax.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	channel_axisint

	The index of the axis that represents color channels.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow.py#L170-L181]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow.py#L134-L139]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
classmethod from_keras(model, bounds, input_shape=None, channel_axis=3, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow.py#L81-L119]

	Alternative constructor for a TensorFlowModel that
accepts a tf.keras.Model instance.

	Parameters

	
	modeltensorflow.keras.Model

	A tensorflow.keras.Model that accepts a single input tensor
and returns a single output tensor representing logits.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	input_shapetuple

	The shape of a single input, e.g. (28, 28, 1) for MNIST.
If None, tries to get the the shape from the model’s
input_shape attribute.

	channel_axisint

	The index of the axis that represents color channels.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input
by the second element.

	
gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow.py#L151-L159]

	Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient.
Subclasses can provide more efficient implementations that
only calculate the gradient.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow.py#L130-L132]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow.py#L141-L149]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.TensorFlowEagerModel(model, bounds, num_classes=None, channel_axis=3, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow_eager.py#L8-L139]

	Creates a Model instance from a TensorFlow model using
eager execution.

	Parameters

	
	modela TensorFlow eager model

	The TensorFlow eager model that should be attacked. It will be called
with input tensors and should return logits.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	num_classesint

	If None, will try to infer it from the model’s output shape.

	channel_axisint

	The index of the axis that represents color channels.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow_eager.py#L115-L139]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow_eager.py#L59-L69]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow_eager.py#L71-L72]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/tensorflow_eager.py#L74-L100]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.PyTorchModel(model, bounds, num_classes, channel_axis=1, device=None, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/pytorch.py#L9-L224]

	Creates a Model instance from a PyTorch module.

	Parameters

	
	modeltorch.nn.Module

	The PyTorch model that should be attacked.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	num_classesint

	Number of classes for which the model will output predictions.

	channel_axisint

	The index of the axis that represents color channels.

	devicestring

	A string specifying the device to do computation on.
If None, will default to “cuda:0” if torch.cuda.is_available()
or “cpu” if not.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/pytorch.py#L180-L224]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/pytorch.py#L73-L100]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/pytorch.py#L102-L103]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/pytorch.py#L105-L153]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.KerasModel(model, bounds, channel_axis=3, preprocessing=(0, 1), predicts='probabilities')[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/keras.py#L9-L179]

	Creates a Model instance from a Keras model.

	Parameters

	
	modelkeras.models.Model

	The Keras model that should be attacked.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	channel_axisint

	The index of the axis that represents color channels.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	predictsstr

	Specifies whether the Keras model predicts logits or probabilities.
Logits are preferred, but probabilities are the default.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/keras.py#L168-L179]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/keras.py#L147-L153]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/keras.py#L144-L145]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/keras.py#L155-L166]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.TheanoModel(images, logits, bounds, num_classes, channel_axis=1, preprocessing=[0, 1])[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/theano.py#L8-L113]

	Creates a Model instance from existing Theano tensors.

	Parameters

	
	imagestheano.tensor

	The input to the model.

	logitstheano.tensor

	The predictions of the model, before the softmax.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	num_classesint

	Number of classes for which the model will output predictions.

	channel_axisint

	The index of the axis that represents color channels.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/theano.py#L103-L113]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/theano.py#L69-L73]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/theano.py#L89-L98]

	Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient.
Subclasses can provide more efficient implementations that
only calculate the gradient.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/theano.py#L100-L101]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/theano.py#L75-L87]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.LasagneModel(input_layer, logits_layer, bounds, channel_axis=1, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/lasagne.py#L8-L120]

	Creates a Model instance from a Lasagne network.

	Parameters

	
	input_layerlasagne.layers.Layer

	The input to the model.

	logits_layerlasagne.layers.Layer

	The output of the model, before the softmax.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	channel_axisint

	The index of the axis that represents color channels.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/lasagne.py#L109-L120]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/lasagne.py#L73-L77]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/lasagne.py#L94-L104]

	Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient.
Subclasses can provide more efficient implementations that
only calculate the gradient.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/lasagne.py#L106-L107]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/lasagne.py#L79-L92]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.MXNetModel(data, logits, args, ctx, num_classes, bounds, channel_axis=1, aux_states=None, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet.py#L8-L177]

	Creates a Model instance from existing MXNet symbols and weights.

	Parameters

	
	datamxnet.symbol.Variable

	The input to the model.

	logitsmxnet.symbol.Symbol

	The predictions of the model, before the softmax.

	argsdictionary mapping str to mxnet.nd.array

	The parameters of the model.

	ctxmxnet.context.Context

	The device, e.g. mxnet.cpu() or mxnet.gpu().

	num_classesint

	The number of classes.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	channel_axisint

	The index of the axis that represents color channels.

	aux_statesdictionary mapping str to mxnet.nd.array

	The states of auxiliary parameters of the model.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet.py#L149-L177]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet.py#L91-L102]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet.py#L88-L89]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet.py#L104-L132]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.MXNetGluonModel(block, bounds, num_classes, ctx=None, channel_axis=1, preprocessing=(0, 1))[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet_gluon.py#L8-L95]

	Creates a Model instance from an existing MXNet Gluon Block.

	Parameters

	
	blockmxnet.gluon.Block

	The Gluon Block representing the model to be run.

	ctxmxnet.context.Context

	The device, e.g. mxnet.cpu() or mxnet.gpu().

	num_classesint

	The number of classes.

	boundstuple

	Tuple of lower and upper bound for the pixel values, usually
(0, 1) or (0, 255).

	channel_axisint

	The index of the axis that represents color channels.

	preprocessing: 2-element tuple with floats or numpy arrays

	Elementwises preprocessing of input; we first subtract the first
element of preprocessing from the input and then divide the input by
the second element.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet_gluon.py#L92-L95]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet_gluon.py#L56-L63]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet_gluon.py#L53-L54]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/mxnet_gluon.py#L65-L78]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
class foolbox.models.ModelWrapper(model)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L7-L42]

	Base class for models that wrap other models.

This base class can be used to implement model wrappers
that turn models into new models, for example by preprocessing
the input or modifying the gradient.

	Parameters

	
	modelModel

	The model that is wrapped.

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L35-L36]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L41-L42]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions(self, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L38-L39]

	Convenience method that calculates predictions for a single image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	numpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

See also

	batch_predictions()

	

	
class foolbox.models.DifferentiableModelWrapper(model)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L45-L67]

	Base class for models that wrap other models and provide
gradient methods.

This base class can be used to implement model wrappers
that turn models into new models, for example by preprocessing
the input or modifying the gradient.

	Parameters

	
	modelModel

	The model that is wrapped.

	
class foolbox.models.ModelWithoutGradients(model)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L70-L74]

	Turns a model into a model without gradients.

	
class foolbox.models.ModelWithEstimatedGradients(model, gradient_estimator)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L77-L109]

	Turns a model into a model with gradients estimated
by the given gradient estimator.

	Parameters

	
	modelModel

	The model that is wrapped.

	gradient_estimatorcallable

	Callable taking three arguments (pred_fn, image, label) and
returning the estimated gradients. pred_fn will be the
batch_predictions method of the wrapped model.

	
class foolbox.models.CompositeModel(forward_model, backward_model)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L112-L170]

	Combines predictions of a (black-box) model with the gradient of a
(substitute) model.

	Parameters

	
	forward_modelModel

	The model that should be fooled and will be used for predictions.

	backward_modelModel

	The model that provides the gradients.

	
backward(self, gradient, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L157-L158]

	Backpropagates the gradient of some loss w.r.t. the logits
through the network and returns the gradient of that loss w.r.t
to the input image.

	Parameters

	
	gradientnumpy.ndarray

	Gradient of some loss w.r.t. the logits.

	imagenumpy.ndarray

	Image with shape (height, width, channels).

	Returns

	
	gradientnumpy.ndarray

	The gradient w.r.t the image.

See also

	gradient()

	

	
batch_predictions(self, images)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L146-L147]

	Calculates predictions for a batch of images.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	Returns

	
	numpy.ndarray

	Predictions (logits, i.e. before the softmax) with shape
(batch size, number of classes).

See also

	predictions()

	

	
gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L154-L155]

	Calculates the gradient of the cross-entropy loss w.r.t. the image.

The default implementation calls predictions_and_gradient.
Subclasses can provide more efficient implementations that
only calculate the gradient.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

	
num_classes(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L143-L144]

	Determines the number of classes.

	Returns

	
	int

	The number of classes for which the model creates predictions.

	
predictions_and_gradient(self, image, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/models/wrappers.py#L149-L152]

	Calculates predictions for an image and the gradient of
the cross-entropy loss w.r.t. the image.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	labelint

	Reference label used to calculate the gradient.

	Returns

	
	predictionsnumpy.ndarray

	Vector of predictions (logits, i.e. before the softmax) with
shape (number of classes,).

	gradientnumpy.ndarray

	The gradient of the cross-entropy loss w.r.t. the image. Will
have the same shape as the image.

See also

	gradient()

	

foolbox.criteria

Provides classes that define what is adversarial.

Criteria

We provide criteria for untargeted and targeted adversarial attacks.

	Misclassification

	Defines adversarials as images for which the predicted class is not the original class.

	TopKMisclassification

	Defines adversarials as images for which the original class is not one of the top k predicted classes.

	OriginalClassProbability

	Defines adversarials as images for which the probability of the original class is below a given threshold.

	ConfidentMisclassification

	Defines adversarials as images for which the probability of any class other than the original is above a given threshold.

	TargetClass

	Defines adversarials as images for which the predicted class is the given target class.

	TargetClassProbability

	Defines adversarials as images for which the probability of a given target class is above a given threshold.

Examples

Untargeted criteria:

>>> from foolbox.criteria import Misclassification
>>> criterion1 = Misclassification()

>>> from foolbox.criteria import TopKMisclassification
>>> criterion2 = TopKMisclassification(k=5)

Targeted criteria:

>>> from foolbox.criteria import TargetClass
>>> criterion3 = TargetClass(22)

>>> from foolbox.criteria import TargetClassProbability
>>> criterion4 = TargetClassProbability(22, p=0.99)

Criteria can be combined to create a new criterion:

>>> criterion5 = criterion2 & criterion3

Detailed description

	
class foolbox.criteria.Criterion[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L61-L112]

	Base class for criteria that define what is adversarial.

The Criterion class represents a criterion used to
determine if predictions for an image are adversarial given
a reference label. It should be subclassed when implementing
new criteria. Subclasses must implement is_adversarial.

	
is_adversarial(self, predictions, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L89-L109]

	Decides if predictions for an image are adversarial given
a reference label.

	Parameters

	
	predictionsnumpy.ndarray

	A vector with the pre-softmax predictions for some image.

	labelint

	The label of the unperturbed reference image.

	Returns

	
	bool

	True if an image with the given predictions is an adversarial
example when the ground-truth class is given by label, False
otherwise.

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L71-L87]

	Returns a human readable name that uniquely identifies
the criterion with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the criterion
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.criteria.Misclassification[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L167-L186]

	Defines adversarials as images for which the predicted class
is not the original class.

See also

	TopKMisclassification

	

Notes

Uses numpy.argmax to break ties.

	
is_adversarial(self, predictions, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L184-L186]

	Decides if predictions for an image are adversarial given
a reference label.

	Parameters

	
	predictionsnumpy.ndarray

	A vector with the pre-softmax predictions for some image.

	labelint

	The label of the unperturbed reference image.

	Returns

	
	bool

	True if an image with the given predictions is an adversarial
example when the ground-truth class is given by label, False
otherwise.

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L181-L182]

	Returns a human readable name that uniquely identifies
the criterion with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the criterion
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.criteria.ConfidentMisclassification(p)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L189-L213]

	Defines adversarials as images for which the probability
of any class other than the original is above a given threshold.

	Parameters

	
	pfloat

	The threshold probability. If the probability of any class
other than the original is at least p, the image is
considered an adversarial. It must satisfy 0 <= p <= 1.

	
is_adversarial(self, predictions, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L210-L213]

	Decides if predictions for an image are adversarial given
a reference label.

	Parameters

	
	predictionsnumpy.ndarray

	A vector with the pre-softmax predictions for some image.

	labelint

	The label of the unperturbed reference image.

	Returns

	
	bool

	True if an image with the given predictions is an adversarial
example when the ground-truth class is given by label, False
otherwise.

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L207-L208]

	Returns a human readable name that uniquely identifies
the criterion with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the criterion
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.criteria.TopKMisclassification(k)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L216-L249]

	Defines adversarials as images for which the original class is
not one of the top k predicted classes.

For k = 1, the Misclassification class provides a more
efficient implementation.

	Parameters

	
	kint

	Number of top predictions to which the reference label is
compared to.

See also

	Misclassification

	Provides a more effcient implementation for k = 1.

Notes

Uses numpy.argsort to break ties.

	
is_adversarial(self, predictions, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L247-L249]

	Decides if predictions for an image are adversarial given
a reference label.

	Parameters

	
	predictionsnumpy.ndarray

	A vector with the pre-softmax predictions for some image.

	labelint

	The label of the unperturbed reference image.

	Returns

	
	bool

	True if an image with the given predictions is an adversarial
example when the ground-truth class is given by label, False
otherwise.

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L244-L245]

	Returns a human readable name that uniquely identifies
the criterion with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the criterion
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.criteria.TargetClass(target_class)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L252-L280]

	Defines adversarials as images for which the predicted class
is the given target class.

	Parameters

	
	target_classint

	The target class that needs to be predicted for an image
to be considered an adversarial.

Notes

Uses numpy.argmax to break ties.

	
is_adversarial(self, predictions, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L278-L280]

	Decides if predictions for an image are adversarial given
a reference label.

	Parameters

	
	predictionsnumpy.ndarray

	A vector with the pre-softmax predictions for some image.

	labelint

	The label of the unperturbed reference image.

	Returns

	
	bool

	True if an image with the given predictions is an adversarial
example when the ground-truth class is given by label, False
otherwise.

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L275-L276]

	Returns a human readable name that uniquely identifies
the criterion with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the criterion
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.criteria.OriginalClassProbability(p)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L283-L311]

	Defines adversarials as images for which the probability
of the original class is below a given threshold.

This criterion alone does not guarantee that the class
predicted for the adversarial image is not the original class
(unless p < 1 / number of classes). Therefore, it should usually
be combined with a classifcation criterion.

	Parameters

	
	pfloat

	The threshold probability. If the probability of the
original class is below this threshold, the image is
considered an adversarial. It must satisfy 0 <= p <= 1.

	
is_adversarial(self, predictions, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L309-L311]

	Decides if predictions for an image are adversarial given
a reference label.

	Parameters

	
	predictionsnumpy.ndarray

	A vector with the pre-softmax predictions for some image.

	labelint

	The label of the unperturbed reference image.

	Returns

	
	bool

	True if an image with the given predictions is an adversarial
example when the ground-truth class is given by label, False
otherwise.

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L306-L307]

	Returns a human readable name that uniquely identifies
the criterion with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the criterion
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.criteria.TargetClassProbability(target_class, p)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L314-L351]

	Defines adversarials as images for which the probability
of a given target class is above a given threshold.

If the threshold is below 0.5, this criterion does not guarantee
that the class predicted for the adversarial image is not the
original class. In that case, it should usually be combined with
a classification criterion.

	Parameters

	
	target_classint

	The target class for which the predicted probability must
be above the threshold probability p, otherwise the image
is not considered an adversarial.

	pfloat

	The threshold probability. If the probability of the
target class is above this threshold, the image is
considered an adversarial. It must satisfy 0 <= p <= 1.

	
is_adversarial(self, predictions, label)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L349-L351]

	Decides if predictions for an image are adversarial given
a reference label.

	Parameters

	
	predictionsnumpy.ndarray

	A vector with the pre-softmax predictions for some image.

	labelint

	The label of the unperturbed reference image.

	Returns

	
	bool

	True if an image with the given predictions is an adversarial
example when the ground-truth class is given by label, False
otherwise.

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/criteria.py#L345-L347]

	Returns a human readable name that uniquely identifies
the criterion with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the criterion
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

foolbox.zoo

Get Model

	
foolbox.zoo.get_model(url)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/zoo/zoo.py#L5-L37]

	Provides utilities to download foolbox-compatible robust models
to easily test attacks against them by simply providing a git-URL.

Examples

Instantiate a model:

>>> from foolbox import zoo
>>> url = "https://github.com/bveliqi/foolbox-zoo-dummy.git"
>>> model = zoo.get_model(url) # doctest: +SKIP

Only works with a foolbox-zoo compatible repository.
I.e. models need to have a foolbox_model.py file
with a create()-function, which returns a foolbox-wrapped model.

Example repositories:

	https://github.com/bethgelab/mnist_challenge

	https://github.com/bethgelab/cifar10_challenge

	https://github.com/bethgelab/convex_adversarial

	Parameters

	url – URL to the git repository

	Returns

	a foolbox-wrapped model instance

Fetch Weights

	
foolbox.zoo.fetch_weights(weights_uri, unzip=False)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/zoo/weights_fetcher.py#L12-L53]

	Provides utilities to download and extract packages
containing model weights when creating foolbox-zoo compatible
repositories, if the weights are not part of the repository itself.

Examples

Download and unzip weights:

>>> from foolbox import zoo
>>> url = 'https://github.com/MadryLab/mnist_challenge_models/raw/master/secret.zip' # noqa F501
>>> weights_path = zoo.fetch_weights(url, unzip=True)

	Parameters

	
	weights_uri – the URI to fetch the weights from

	unzip – should be True if the file to be downloaded is
a zipped package

	Returns

	local path where the weights have been downloaded
and potentially unzipped to

foolbox.distances

Provides classes to measure the distance between images.

Distances

	MeanSquaredDistance

	Calculates the mean squared error between two images.

	MeanAbsoluteDistance

	Calculates the mean absolute error between two images.

	Linfinity

	Calculates the L-infinity norm of the difference between two images.

	L0

	Calculates the L0 norm of the difference between two images.

Aliases

	MSE

	alias of foolbox.distances.MeanSquaredDistance

	MAE

	alias of foolbox.distances.MeanAbsoluteDistance

	Linf

	alias of foolbox.distances.Linfinity

Base class

To implement a new distance, simply subclass the Distance class and
implement the _calculate() method.

	Distance

	Base class for distances.

Detailed description

	
class foolbox.distances.Distance(reference=None, other=None, bounds=None, value=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/distances.py#L53-L118]

	Base class for distances.

This class should be subclassed when implementing
new distances. Subclasses must implement _calculate.

	
class foolbox.distances.MeanSquaredDistance(reference=None, other=None, bounds=None, value=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/distances.py#L121-L147]

	Calculates the mean squared error between two images.

	
class foolbox.distances.MeanAbsoluteDistance(reference=None, other=None, bounds=None, value=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/distances.py#L153-L167]

	Calculates the mean absolute error between two images.

	
class foolbox.distances.Linfinity(reference=None, other=None, bounds=None, value=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/distances.py#L173-L190]

	Calculates the L-infinity norm of the difference between two images.

	
class foolbox.distances.L0(reference=None, other=None, bounds=None, value=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/distances.py#L196-L212]

	Calculates the L0 norm of the difference between two images.

	
foolbox.distances.MSE[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/distances.py#L121-L147]

	alias of foolbox.distances.MeanSquaredDistance

	
foolbox.distances.MAE[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/distances.py#L153-L167]

	alias of foolbox.distances.MeanAbsoluteDistance

	
foolbox.distances.Linf[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/distances.py#L173-L190]

	alias of foolbox.distances.Linfinity

foolbox.attacks

Gradient-based attacks

	GradientAttack

	Perturbs the image with the gradient of the loss w.r.t.

	GradientSignAttack

	Adds the sign of the gradient to the image, gradually increasing the magnitude until the image is misclassified.

	FGSM

	alias of foolbox.attacks.gradient.GradientSignAttack

	LinfinityBasicIterativeAttack

	The Basic Iterative Method introduced in [R37dbc8f24aee-1].

	BasicIterativeMethod

	alias of foolbox.attacks.iterative_projected_gradient.LinfinityBasicIterativeAttack

	BIM

	alias of foolbox.attacks.iterative_projected_gradient.LinfinityBasicIterativeAttack

	L1BasicIterativeAttack

	Modified version of the Basic Iterative Method that minimizes the L1 distance.

	L2BasicIterativeAttack

	Modified version of the Basic Iterative Method that minimizes the L2 distance.

	ProjectedGradientDescentAttack

	The Projected Gradient Descent Attack introduced in [R367e8e10528a-1] without random start.

	ProjectedGradientDescent

	alias of foolbox.attacks.iterative_projected_gradient.ProjectedGradientDescentAttack

	PGD

	alias of foolbox.attacks.iterative_projected_gradient.ProjectedGradientDescentAttack

	RandomStartProjectedGradientDescentAttack

	The Projected Gradient Descent Attack introduced in [Re6066bc39e14-1] with random start.

	RandomProjectedGradientDescent

	alias of foolbox.attacks.iterative_projected_gradient.RandomStartProjectedGradientDescentAttack

	RandomPGD

	alias of foolbox.attacks.iterative_projected_gradient.RandomStartProjectedGradientDescentAttack

	MomentumIterativeAttack

	The Momentum Iterative Method attack introduced in [R86d363e1fb2f-1].

	MomentumIterativeMethod

	alias of foolbox.attacks.iterative_projected_gradient.MomentumIterativeAttack

	LBFGSAttack

	Uses L-BFGS-B to minimize the distance between the image and the adversarial as well as the cross-entropy between the predictions for the adversarial and the the one-hot encoded target class.

	DeepFoolAttack

	Simple and close to optimal gradient-based adversarial attack.

	NewtonFoolAttack

	Implements the NewtonFool Attack.

	DeepFoolL2Attack

	

	DeepFoolLinfinityAttack

	

	ADefAttack

	Adversarial attack that distorts the image, i.e.

	SLSQPAttack

	Uses SLSQP to minimize the distance between the image and the adversarial under the constraint that the image is adversarial.

	SaliencyMapAttack

	Implements the Saliency Map Attack.

	IterativeGradientAttack

	Like GradientAttack but with several steps for each epsilon.

	IterativeGradientSignAttack

	Like GradientSignAttack but with several steps for each epsilon.

	CarliniWagnerL2Attack

	The L2 version of the Carlini & Wagner attack.

Score-based attacks

	SinglePixelAttack

	Perturbs just a single pixel and sets it to the min or max.

	LocalSearchAttack

	A black-box attack based on the idea of greedy local search.

	ApproximateLBFGSAttack

	Same as LBFGSAttack with approximate_gradient set to True.

Decision-based attacks

	BoundaryAttack

	A powerful adversarial attack that requires neither gradients nor probabilities.

	SpatialAttack

	Adversarially chosen rotations and translations [1].

	PointwiseAttack

	Starts with an adversarial and performs a binary search between the adversarial and the original for each dimension of the input individually.

	GaussianBlurAttack

	Blurs the image until it is misclassified.

	ContrastReductionAttack

	Reduces the contrast of the image until it is misclassified.

	AdditiveUniformNoiseAttack

	Adds uniform noise to the image, gradually increasing the standard deviation until the image is misclassified.

	AdditiveGaussianNoiseAttack

	Adds Gaussian noise to the image, gradually increasing the standard deviation until the image is misclassified.

	SaltAndPepperNoiseAttack

	Increases the amount of salt and pepper noise until the image is misclassified.

	BlendedUniformNoiseAttack

	Blends the image with a uniform noise image until it is misclassified.

Other attacks

	BinarizationRefinementAttack

	For models that preprocess their inputs by binarizing the inputs, this attack can improve adversarials found by other attacks.

	PrecomputedImagesAttack

	Attacks a model using precomputed adversarial candidates.

Gradient-based attacks

	
class foolbox.attacks.GradientAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/gradient.py#L49-L97]

	Perturbs the image with the gradient of the loss w.r.t. the image,
gradually increasing the magnitude until the image is misclassified.

Does not do anything if the model does not have a gradient.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_epsilon=1)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L57-L90]

	Perturbs the image with the gradient of the loss w.r.t. the image,
gradually increasing the magnitude until the image is misclassified.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of step sizes in the gradient direction
or number of step sizes between 0 and max_epsilon that should
be tried.

	max_epsilonfloat

	Largest step size if epsilons is not an iterable.

	
class foolbox.attacks.GradientSignAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/gradient.py#L100-L154]

	Adds the sign of the gradient to the image, gradually increasing
the magnitude until the image is misclassified. This attack is
often referred to as Fast Gradient Sign Method and was introduced
in [R20d0064ee4c9-1].

Does not do anything if the model does not have a gradient.

References

	R20d0064ee4c9-1

	Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy,
“Explaining and Harnessing Adversarial Examples”,
https://arxiv.org/abs/1412.6572

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_epsilon=1)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L115-L148]

	Adds the sign of the gradient to the image, gradually increasing
the magnitude until the image is misclassified.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of step sizes in the direction of the sign of
the gradient or number of step sizes between 0 and max_epsilon
that should be tried.

	max_epsilonfloat

	Largest step size if epsilons is not an iterable.

	
foolbox.attacks.FGSM[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/gradient.py#L100-L154]

	alias of foolbox.attacks.gradient.GradientSignAttack

	
class foolbox.attacks.LinfinityBasicIterativeAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L248-L326]

	The Basic Iterative Method introduced in [R37dbc8f24aee-1].

This attack is also known as Projected Gradient
Descent (PGD) (without random start) or FGMS^k.

References

	R37dbc8f24aee-1

	Alexey Kurakin, Ian Goodfellow, Samy Bengio,
“Adversarial examples in the physical world”,

https://arxiv.org/abs/1607.02533

See also

ProjectedGradientDescentAttack

	
__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, random_start=False, return_early=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L269-L326]

	Simple iterative gradient-based attack known as
Basic Iterative Method, Projected Gradient Descent or FGSM^k.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	binary_searchbool or int

	Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start
the search. If False, hyperparameters are not optimized.
Can also be an integer, specifying the number of binary
search steps (default 20).

	epsilonfloat

	Limit on the perturbation size; if binary_search is True,
this value is only for initialization and automatically
adapted.

	stepsizefloat

	Step size for gradient descent; if binary_search is True,
this value is only for initialization and automatically
adapted.

	iterationsint

	Number of iterations for each gradient descent run.

	random_startbool

	Start the attack from a random point rather than from the
original input.

	return_earlybool

	Whether an individual gradient descent run should stop as
soon as an adversarial is found.

	
foolbox.attacks.BasicIterativeMethod[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L248-L326]

	alias of foolbox.attacks.iterative_projected_gradient.LinfinityBasicIterativeAttack

	
foolbox.attacks.BIM[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L248-L326]

	alias of foolbox.attacks.iterative_projected_gradient.LinfinityBasicIterativeAttack

	
class foolbox.attacks.L1BasicIterativeAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L333-L403]

	Modified version of the Basic Iterative Method
that minimizes the L1 distance.

See also

LinfinityBasicIterativeAttack

	
__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, random_start=False, return_early=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L346-L403]

	Simple iterative gradient-based attack known as
Basic Iterative Method, Projected Gradient Descent or FGSM^k.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	binary_searchbool or int

	Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start
the search. If False, hyperparameters are not optimized.
Can also be an integer, specifying the number of binary
search steps (default 20).

	epsilonfloat

	Limit on the perturbation size; if binary_search is True,
this value is only for initialization and automatically
adapted.

	stepsizefloat

	Step size for gradient descent; if binary_search is True,
this value is only for initialization and automatically
adapted.

	iterationsint

	Number of iterations for each gradient descent run.

	random_startbool

	Start the attack from a random point rather than from the
original input.

	return_earlybool

	Whether an individual gradient descent run should stop as
soon as an adversarial is found.

	
class foolbox.attacks.L2BasicIterativeAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L406-L476]

	Modified version of the Basic Iterative Method
that minimizes the L2 distance.

See also

LinfinityBasicIterativeAttack

	
__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, stepsize=0.05, iterations=10, random_start=False, return_early=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L419-L476]

	Simple iterative gradient-based attack known as
Basic Iterative Method, Projected Gradient Descent or FGSM^k.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	binary_searchbool or int

	Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start
the search. If False, hyperparameters are not optimized.
Can also be an integer, specifying the number of binary
search steps (default 20).

	epsilonfloat

	Limit on the perturbation size; if binary_search is True,
this value is only for initialization and automatically
adapted.

	stepsizefloat

	Step size for gradient descent; if binary_search is True,
this value is only for initialization and automatically
adapted.

	iterationsint

	Number of iterations for each gradient descent run.

	random_startbool

	Start the attack from a random point rather than from the
original input.

	return_earlybool

	Whether an individual gradient descent run should stop as
soon as an adversarial is found.

	
class foolbox.attacks.ProjectedGradientDescentAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L479-L563]

	The Projected Gradient Descent Attack
introduced in [R367e8e10528a-1] without random start.

When used without a random start, this attack
is also known as Basic Iterative Method (BIM)
or FGSM^k.

References

	R367e8e10528a-1

	Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, Adrian Vladu, “Towards Deep Learning
Models Resistant to Adversarial Attacks”,
https://arxiv.org/abs/1706.06083

See also

LinfinityBasicIterativeAttack and
RandomStartProjectedGradientDescentAttack

	
__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, stepsize=0.01, iterations=40, random_start=False, return_early=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L506-L563]

	Simple iterative gradient-based attack known as
Basic Iterative Method, Projected Gradient Descent or FGSM^k.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	binary_searchbool or int

	Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start
the search. If False, hyperparameters are not optimized.
Can also be an integer, specifying the number of binary
search steps (default 20).

	epsilonfloat

	Limit on the perturbation size; if binary_search is True,
this value is only for initialization and automatically
adapted.

	stepsizefloat

	Step size for gradient descent; if binary_search is True,
this value is only for initialization and automatically
adapted.

	iterationsint

	Number of iterations for each gradient descent run.

	random_startbool

	Start the attack from a random point rather than from the
original input.

	return_earlybool

	Whether an individual gradient descent run should stop as
soon as an adversarial is found.

	
foolbox.attacks.ProjectedGradientDescent[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L479-L563]

	alias of foolbox.attacks.iterative_projected_gradient.ProjectedGradientDescentAttack

	
class foolbox.attacks.RandomStartProjectedGradientDescentAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L570-L647]

	The Projected Gradient Descent Attack
introduced in [Re6066bc39e14-1] with random start.

References

	Re6066bc39e14-1

	Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, Adrian Vladu, “Towards Deep Learning
Models Resistant to Adversarial Attacks”,
https://arxiv.org/abs/1706.06083

See also

ProjectedGradientDescentAttack

	
__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, stepsize=0.01, iterations=40, random_start=True, return_early=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L590-L647]

	Simple iterative gradient-based attack known as
Basic Iterative Method, Projected Gradient Descent or FGSM^k.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	binary_searchbool or int

	Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start
the search. If False, hyperparameters are not optimized.
Can also be an integer, specifying the number of binary
search steps (default 20).

	epsilonfloat

	Limit on the perturbation size; if binary_search is True,
this value is only for initialization and automatically
adapted.

	stepsizefloat

	Step size for gradient descent; if binary_search is True,
this value is only for initialization and automatically
adapted.

	iterationsint

	Number of iterations for each gradient descent run.

	random_startbool

	Start the attack from a random point rather than from the
original input.

	return_earlybool

	Whether an individual gradient descent run should stop as
soon as an adversarial is found.

	
foolbox.attacks.RandomProjectedGradientDescent[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L570-L647]

	alias of foolbox.attacks.iterative_projected_gradient.RandomStartProjectedGradientDescentAttack

	
foolbox.attacks.RandomPGD[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L570-L647]

	alias of foolbox.attacks.iterative_projected_gradient.RandomStartProjectedGradientDescentAttack

	
class foolbox.attacks.MomentumIterativeAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L654-L756]

	The Momentum Iterative Method attack
introduced in [R86d363e1fb2f-1]. It’s like the Basic
Iterative Method or Projected Gradient
Descent except that it uses momentum.

References

	R86d363e1fb2f-1

	Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su,
Jun Zhu, Xiaolin Hu, Jianguo Li, “Boosting Adversarial
Attacks with Momentum”,
https://arxiv.org/abs/1710.06081

	
__call__(self, input_or_adv, label=None, unpack=True, binary_search=True, epsilon=0.3, stepsize=0.06, iterations=10, decay_factor=1.0, random_start=False, return_early=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L695-L756]

	Momentum-based iterative gradient attack known as
Momentum Iterative Method.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	binary_searchbool

	Whether to perform a binary search over epsilon and stepsize,
keeping their ratio constant and using their values to start
the search. If False, hyperparameters are not optimized.
Can also be an integer, specifying the number of binary
search steps (default 20).

	epsilonfloat

	Limit on the perturbation size; if binary_search is True,
this value is only for initialization and automatically
adapted.

	stepsizefloat

	Step size for gradient descent; if binary_search is True,
this value is only for initialization and automatically
adapted.

	iterationsint

	Number of iterations for each gradient descent run.

	decay_factorfloat

	Decay factor used by the momentum term.

	random_startbool

	Start the attack from a random point rather than from the
original input.

	return_earlybool

	Whether an individual gradient descent run should stop as
soon as an adversarial is found.

	
foolbox.attacks.MomentumIterativeMethod[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_projected_gradient.py#L654-L756]

	alias of foolbox.attacks.iterative_projected_gradient.MomentumIterativeAttack

	
class foolbox.attacks.LBFGSAttack(*args, **kwargs)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/lbfgs.py#L14-L248]

	Uses L-BFGS-B to minimize the distance between the image and the adversarial
as well as the cross-entropy between the predictions for the adversarial
and the the one-hot encoded target class.

If the criterion does not have a target class, a random class is chosen
from the set of all classes except the original one.

Notes

This implementation generalizes algorithm 1 in [Rf3ff9c7ff5d3-1] to support other
targeted criteria and other distance measures.

References

	Rf3ff9c7ff5d3-1

	https://arxiv.org/abs/1510.05328

	
__call__(self, input_or_adv, label=None, unpack=True, epsilon=1e-05, num_random_targets=0, maxiter=150)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L47-L140]

	Uses L-BFGS-B to minimize the distance between the image and the
adversarial as well as the cross-entropy between the predictions for
the adversarial and the the one-hot encoded target class.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonfloat

	Epsilon of the binary search.

	num_random_targetsint

	Number of random target classes if no target class is given
by the criterion.

	maxiterint

	Maximum number of iterations for L-BFGS-B.

	
__init__(self, *args, **kwargs)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/lbfgs.py#L34-L41]

	Initialize self. See help(type(self)) for accurate signature.

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/lbfgs.py#L43-L45]

	Returns a human readable name that uniquely identifies
the attack with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the attack
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.attacks.DeepFoolAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/deepfool.py#L12-L164]

	Simple and close to optimal gradient-based
adversarial attack.

Implementes DeepFool introduced in [Rb4dd02640756-1].

References

	Rb4dd02640756-1

	Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard,
“DeepFool: a simple and accurate method to fool deep neural
networks”, https://arxiv.org/abs/1511.04599

	
__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10, p=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L26-L164]

	Simple and close to optimal gradient-based
adversarial attack.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	stepsint

	Maximum number of steps to perform.

	subsampleint

	Limit on the number of the most likely classes that should
be considered. A small value is usually sufficient and much
faster.

	pint or float

	Lp-norm that should be minimzed, must be 2 or np.inf.

	
class foolbox.attacks.NewtonFoolAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/newtonfool.py#L10-L105]

	Implements the NewtonFool Attack.

The attack was introduced in [R6a972939b320-1].

References

	R6a972939b320-1

	Uyeong Jang et al., “Objective Metrics and Gradient Descent
Algorithms for Adversarial Examples in Machine Learning”,
https://dl.acm.org/citation.cfm?id=3134635

	
__call__(self, input_or_adv, label=None, unpack=True, max_iter=100, eta=0.01)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L22-L94]

	
	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	max_iterint

	The maximum number of iterations.

	etafloat

	the eta coefficient

	
class foolbox.attacks.DeepFoolL2Attack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/deepfool.py#L167-L172]

	
	
__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/deepfool.py#L168-L172]

	Simple and close to optimal gradient-based
adversarial attack.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	stepsint

	Maximum number of steps to perform.

	subsampleint

	Limit on the number of the most likely classes that should
be considered. A small value is usually sufficient and much
faster.

	pint or float

	Lp-norm that should be minimzed, must be 2 or np.inf.

	
class foolbox.attacks.DeepFoolLinfinityAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/deepfool.py#L175-L180]

	
	
__call__(self, input_or_adv, label=None, unpack=True, steps=100, subsample=10)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/deepfool.py#L176-L180]

	Simple and close to optimal gradient-based
adversarial attack.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	stepsint

	Maximum number of steps to perform.

	subsampleint

	Limit on the number of the most likely classes that should
be considered. A small value is usually sufficient and much
faster.

	pint or float

	Lp-norm that should be minimzed, must be 2 or np.inf.

	
class foolbox.attacks.ADefAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/adef_attack.py#L166-L349]

	Adversarial attack that distorts the image, i.e. changes the locations
of pixels. The algorithm is described in [Rf241e6d2664d-1],
a Repository with the original code can be found in [Rf241e6d2664d-2].
References
———-
.. [Rf241e6d2664d-1] Rima Alaifari, Giovanni S. Alberti, and Tandri Gauksson:

“ADef: an Iterative Algorithm to Construct Adversarial
Deformations”, https://arxiv.org/abs/1804.07729

	
__call__(self, input_or_adv, unpack=True, max_iter=100, max_norm=<Mock name='mock.inf' id='140309014608920'>, label=None, smooth=1.0, subsample=10)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L181-L349]

	
	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	max_iterint > 0

	Maximum number of iterations (default max_iter = 100).

	max_normfloat

	Maximum l2 norm of vector field (default max_norm = numpy.inf).

	smoothfloat >= 0

	Width of the Gaussian kernel used for smoothing.
(default is smooth = 0 for no smoothing).

	subsampleint >= 2

	Limit on the number of the most likely classes that should
be considered. A small value is usually sufficient and much
faster. (default subsample = 10)

	
class foolbox.attacks.SLSQPAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/slsqp.py#L8-L83]

	Uses SLSQP to minimize the distance between the image and the
adversarial under the constraint that the image is adversarial.

	
__call__(self, input_or_adv, label=None, unpack=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L15-L83]

	Uses SLSQP to minimize the distance between the image and the
adversarial under the constraint that the image is adversarial.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, correctly classified image. If image is a
numpy array, label must be passed as well. If image is
an Adversarial instance, label must not be passed.

	labelint

	The reference label of the original image. Must be passed
if image is a numpy array, must not be passed if image is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial image, otherwise returns
the Adversarial object.

	
class foolbox.attacks.SaliencyMapAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/saliency.py#L11-L179]

	Implements the Saliency Map Attack.

The attack was introduced in [R08e06ca693ba-1].

References

	R08e06ca693ba-1

	Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, Ananthram Swami, “The Limitations of Deep Learning
in Adversarial Settings”, https://arxiv.org/abs/1511.07528

	
__call__(self, input_or_adv, label=None, unpack=True, max_iter=2000, num_random_targets=0, fast=True, theta=0.1, max_perturbations_per_pixel=7)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L24-L151]

	Implements the Saliency Map Attack.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	max_iterint

	The maximum number of iterations to run.

	num_random_targetsint

	Number of random target classes if no target class is given
by the criterion.

	fastbool

	Whether to use the fast saliency map calculation.

	thetafloat

	perturbation per pixel relative to [min, max] range.

	max_perturbations_per_pixelint

	Maximum number of times a pixel can be modified.

	
class foolbox.attacks.IterativeGradientAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_gradient.py#L49-L95]

	Like GradientAttack but with several steps for each epsilon.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, max_epsilon=1, steps=10)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L54-L88]

	Like GradientAttack but with several steps for each epsilon.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of step sizes in the gradient direction
or number of step sizes between 0 and max_epsilon that should
be tried.

	max_epsilonfloat

	Largest step size if epsilons is not an iterable.

	stepsint

	Number of iterations to run.

	
class foolbox.attacks.IterativeGradientSignAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/iterative_gradient.py#L98-L143]

	Like GradientSignAttack but with several steps for each epsilon.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, max_epsilon=1, steps=10)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L103-L137]

	Like GradientSignAttack but with several steps for each epsilon.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of step sizes in the direction of the sign of
the gradient or number of step sizes between 0 and max_epsilon
that should be tried.

	max_epsilonfloat

	Largest step size if epsilons is not an iterable.

	stepsint

	Number of iterations to run.

	
class foolbox.attacks.CarliniWagnerL2Attack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/carlini_wagner.py#L12-L237]

	The L2 version of the Carlini & Wagner attack.

This attack is described in [Rc2cb572b91c5-1]. This implementation
is based on the reference implementation by Carlini [Rc2cb572b91c5-2].
For bounds ≠ (0, 1), it differs from [Rc2cb572b91c5-2] because we
normalize the squared L2 loss with the bounds.

References

	Rc2cb572b91c5-1

	Nicholas Carlini, David Wagner: “Towards Evaluating the
Robustness of Neural Networks”, https://arxiv.org/abs/1608.04644

	Rc2cb572b91c5-2(1,2)

	https://github.com/carlini/nn_robust_attacks

	
__call__(self, input_or_adv, label=None, unpack=True, binary_search_steps=5, max_iterations=1000, confidence=0, learning_rate=0.005, initial_const=0.01, abort_early=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L28-L191]

	The L2 version of the Carlini & Wagner attack.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	binary_search_stepsint

	The number of steps for the binary search used to
find the optimal tradeoff-constant between distance and confidence.

	max_iterationsint

	The maximum number of iterations. Larger values are more
accurate; setting it too small will require a large learning rate
and will produce poor results.

	confidenceint or float

	Confidence of adversarial examples: a higher value produces
adversarials that are further away, but more strongly classified
as adversarial.

	learning_ratefloat

	The learning rate for the attack algorithm. Smaller values
produce better results but take longer to converge.

	initial_constfloat

	The initial tradeoff-constant to use to tune the relative
importance of distance and confidence. If binary_search_steps
is large, the initial constant is not important.

	abort_earlybool

	If True, Adam will be aborted if the loss hasn’t decreased
for some time (a tenth of max_iterations).

	
static best_other_class(logits, exclude)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/carlini_wagner.py#L232-L237]

	Returns the index of the largest logit, ignoring the class that
is passed as exclude.

	
classmethod loss_function(const, a, x, logits, reconstructed_original, confidence, min_, max_)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/carlini_wagner.py#L193-L230]

	Returns the loss and the gradient of the loss w.r.t. x,
assuming that logits = model(x).

Score-based attacks

	
class foolbox.attacks.SinglePixelAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/localsearch.py#L10-L67]

	Perturbs just a single pixel and sets it to the min or max.

	
__call__(self, input_or_adv, label=None, unpack=True, max_pixels=1000)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L13-L67]

	Perturbs just a single pixel and sets it to the min or max.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, correctly classified image. If image is a
numpy array, label must be passed as well. If image is
an Adversarial instance, label must not be passed.

	labelint

	The reference label of the original image. Must be passed
if image is a numpy array, must not be passed if image is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial image, otherwise returns
the Adversarial object.

	max_pixelsint

	Maximum number of pixels to try.

	
class foolbox.attacks.LocalSearchAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/localsearch.py#L70-L230]

	A black-box attack based on the idea of greedy local search.

This implementation is based on the algorithm in [Rb320cee6998a-1].

References

	Rb320cee6998a-1

	Nina Narodytska, Shiva Prasad Kasiviswanathan, “Simple
Black-Box Adversarial Perturbations for Deep Networks”,
https://arxiv.org/abs/1612.06299

	
__call__(self, input_or_adv, label=None, unpack=True, r=1.5, p=10.0, d=5, t=5, R=150)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L83-L230]

	A black-box attack based on the idea of greedy local search.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, correctly classified image. If image is a
numpy array, label must be passed as well. If image is
an Adversarial instance, label must not be passed.

	labelint

	The reference label of the original image. Must be passed
if image is a numpy array, must not be passed if image is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial image, otherwise returns
the Adversarial object.

	rfloat

	Perturbation parameter that controls the cyclic perturbation;
must be in [0, 2]

	pfloat

	Perturbation parameter that controls the pixel sensitivity
estimation

	dint

	The half side length of the neighborhood square

	tint

	The number of pixels perturbed at each round

	Rint

	An upper bound on the number of iterations

	
class foolbox.attacks.ApproximateLBFGSAttack(*args, **kwargs)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/lbfgs.py#L251-L259]

	Same as LBFGSAttack with approximate_gradient set to True.

	
__init__(self, *args, **kwargs)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/lbfgs.py#L256-L259]

	Initialize self. See help(type(self)) for accurate signature.

Decision-based attacks

	
class foolbox.attacks.BoundaryAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/boundary_attack.py#L24-L1176]

	A powerful adversarial attack that requires neither gradients
nor probabilities.

This is the reference implementation for the attack introduced in [Re72ca268aa55-1].

Notes

This implementation provides several advanced features:

	ability to continue previous attacks by passing an instance of the
Adversarial class

	ability to pass an explicit starting point; especially to initialize
a targeted attack

	ability to pass an alternative attack used for initialization

	fine-grained control over logging

	ability to specify the batch size

	optional automatic batch size tuning

	optional multithreading for random number generation

	optional multithreading for candidate point generation

References

	Re72ca268aa55-1

	Wieland Brendel (*), Jonas Rauber (*), Matthias Bethge,
“Decision-Based Adversarial Attacks: Reliable Attacks
Against Black-Box Machine Learning Models”,
https://arxiv.org/abs/1712.04248

	
__call__(self, input_or_adv, label=None, unpack=True, iterations=5000, max_directions=25, starting_point=None, initialization_attack=None, log_every_n_steps=1, spherical_step=0.01, source_step=0.01, step_adaptation=1.5, batch_size=1, tune_batch_size=True, threaded_rnd=True, threaded_gen=True, alternative_generator=False, internal_dtype=<Mock name='mock.float64' id='140308927350320'>, verbose=False)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L54-L155]

	Applies the Boundary Attack.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, correctly classified image. If image is a
numpy array, label must be passed as well. If image is
an Adversarial instance, label must not be passed.

	labelint

	The reference label of the original image. Must be passed
if image is a numpy array, must not be passed if image is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial image, otherwise returns
the Adversarial object.

	iterationsint

	Maximum number of iterations to run. Might converge and stop
before that.

	max_directionsint

	Maximum number of trials per ieration.

	starting_pointnumpy.ndarray

	Adversarial input to use as a starting point, in particular
for targeted attacks.

	initialization_attackAttack

	Attack to use to find a starting point. Defaults to
BlendedUniformNoiseAttack.

	log_every_n_stepsint

	Determines verbositity of the logging.

	spherical_stepfloat

	Initial step size for the orthogonal (spherical) step.

	source_stepfloat

	Initial step size for the step towards the target.

	step_adaptationfloat

	Factor by which the step sizes are multiplied or divided.

	batch_sizeint

	Batch size or initial batch size if tune_batch_size is True

	tune_batch_sizebool

	Whether or not the batch size should be automatically chosen
between 1 and max_directions.

	threaded_rndbool

	Whether the random number generation should be multithreaded.

	threaded_genbool

	Whether the candidate point generation should be multithreaded.

	alternative_generator: bool

	Whether an alternative implemenation of the candidate generator
should be used.

	internal_dtypenp.float32 or np.float64

	Higher precision might be slower but is numerically more stable.

	verbosebool

	Controls verbosity of the attack.

	
class foolbox.attacks.SpatialAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/spatial.py#L14-L132]

	Adversarially chosen rotations and translations [1].

This implementation is based on the reference implementation by
Madry et al.: https://github.com/MadryLab/adversarial_spatial

References

	Rdffd25498f9d-1

	Logan Engstrom*, Brandon Tran*, Dimitris Tsipras*,
Ludwig Schmidt, Aleksander Mądry: “A Rotation and a
Translation Suffice: Fooling CNNs with Simple Transformations”,
http://arxiv.org/abs/1712.02779

	
__call__(self, input_or_adv, label=None, unpack=True, do_rotations=True, do_translations=True, x_shift_limits=(-5, 5), y_shift_limits=(-5, 5), angular_limits=(-5, 5), granularity=10, random_sampling=False, abort_early=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L28-L132]

	Adversarially chosen rotations and translations.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	do_rotationsbool

	If False no rotations will be applied to the image.

	do_translationsbool

	If False no translations will be applied to the image.

	x_shift_limitsint or (int, int)

	Limits for horizontal translations in pixels. If one integer is
provided the limits will be (-x_shift_limits, x_shift_limits).

	y_shift_limitsint or (int, int)

	Limits for vertical translations in pixels. If one integer is
provided the limits will be (-y_shift_limits, y_shift_limits).

	angular_limitsint or (int, int)

	Limits for rotations in degrees. If one integer is
provided the limits will be [-angular_limits, angular_limits].

	granularityint

	Density of sampling within limits for each dimension.

	random_samplingbool

	If True we sample translations/rotations randomly within limits,
otherwise we use a regular grid.

	abort_earlybool

	If True, the attack stops as soon as it finds an adversarial.

	
class foolbox.attacks.PointwiseAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/pointwise.py#L10-L191]

	Starts with an adversarial and performs a binary search between
the adversarial and the original for each dimension of the input
individually.

	
__call__(self, input_or_adv, label=None, unpack=True, starting_point=None, initialization_attack=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L17-L145]

	Starts with an adversarial and performs a binary search between
the adversarial and the original for each dimension of the input
individually.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	starting_pointnumpy.ndarray

	Adversarial input to use as a starting point, in particular
for targeted attacks.

	initialization_attackAttack

	Attack to use to find a starting point. Defaults to
SaltAndPepperNoiseAttack.

	
class foolbox.attacks.GaussianBlurAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/blur.py#L10-L63]

	Blurs the image until it is misclassified.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L13-L63]

	Blurs the image until it is misclassified.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of standard deviations of the Gaussian blur
or number of standard deviations between 0 and 1 that should
be tried.

	
class foolbox.attacks.ContrastReductionAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/contrast.py#L8-L53]

	Reduces the contrast of the image until it is misclassified.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L11-L53]

	Reduces the contrast of the image until it is misclassified.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of contrast levels or number of contrast
levels between 1 and 0 that should be tried. Epsilons are
one minus the contrast level.

	
class foolbox.attacks.AdditiveUniformNoiseAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/additive_noise.py#L65-L76]

	Adds uniform noise to the image, gradually increasing
the standard deviation until the image is misclassified.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L16-L58]

	Adds uniform or Gaussian noise to the image, gradually increasing
the standard deviation until the image is misclassified.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of noise levels or number of noise levels
between 0 and 1 that should be tried.

	
__class__[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/../../../envs/v1.8.0/lib/python3.5/abc.py#L109-L231]

	alias of abc.ABCMeta

	
__delattr__(self, name, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Implement delattr(self, name).

	
__dir__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	default dir() implementation

	
__eq__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self==value.

	
__format__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	default object formatter

	
__ge__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self>=value.

	
__getattribute__(self, name, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return getattr(self, name).

	
__gt__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self>value.

	
__hash__(self, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return hash(self).

	
__init__(self, model=None, criterion=<foolbox.criteria.Misclassification object at 0x7f9c37c9a978>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L57-L68]

	Initialize self. See help(type(self)) for accurate signature.

	
__le__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self<=value.

	
__lt__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self<value.

	
__ne__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self!=value.

	
__new__(*args, **kwargs)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Create and return a new object. See help(type) for accurate signature.

	
__reduce__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	helper for pickle

	
__reduce_ex__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	helper for pickle

	
__repr__(self, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return repr(self).

	
__setattr__(self, name, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Implement setattr(self, name, value).

	
__sizeof__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	size of object in memory, in bytes

	
__str__(self, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return str(self).

	
__subclasshook__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__().
It should return True, False or NotImplemented. If it returns
NotImplemented, the normal algorithm is used. Otherwise, it
overrides the normal algorithm (and the outcome is cached).

	
__weakref__[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	list of weak references to the object (if defined)

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L80-L96]

	Returns a human readable name that uniquely identifies
the attack with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the attack
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.attacks.AdditiveGaussianNoiseAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/additive_noise.py#L79-L90]

	Adds Gaussian noise to the image, gradually increasing
the standard deviation until the image is misclassified.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L16-L58]

	Adds uniform or Gaussian noise to the image, gradually increasing
the standard deviation until the image is misclassified.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of noise levels or number of noise levels
between 0 and 1 that should be tried.

	
__class__[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/../../../envs/v1.8.0/lib/python3.5/abc.py#L109-L231]

	alias of abc.ABCMeta

	
__delattr__(self, name, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Implement delattr(self, name).

	
__dir__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	default dir() implementation

	
__eq__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self==value.

	
__format__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	default object formatter

	
__ge__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self>=value.

	
__getattribute__(self, name, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return getattr(self, name).

	
__gt__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self>value.

	
__hash__(self, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return hash(self).

	
__init__(self, model=None, criterion=<foolbox.criteria.Misclassification object at 0x7f9c37c9a978>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L57-L68]

	Initialize self. See help(type(self)) for accurate signature.

	
__le__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self<=value.

	
__lt__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self<value.

	
__ne__(self, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return self!=value.

	
__new__(*args, **kwargs)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Create and return a new object. See help(type) for accurate signature.

	
__reduce__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	helper for pickle

	
__reduce_ex__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	helper for pickle

	
__repr__(self, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return repr(self).

	
__setattr__(self, name, value, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Implement setattr(self, name, value).

	
__sizeof__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	size of object in memory, in bytes

	
__str__(self, /)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Return str(self).

	
__subclasshook__()[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__().
It should return True, False or NotImplemented. If it returns
NotImplemented, the normal algorithm is used. Otherwise, it
overrides the normal algorithm (and the outcome is cached).

	
__weakref__[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks.py]

	list of weak references to the object (if defined)

	
name(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L80-L96]

	Returns a human readable name that uniquely identifies
the attack with its hyperparameters.

	Returns

	
	str

	Human readable name that uniquely identifies the attack
with its hyperparameters.

Notes

Defaults to the class name but subclasses can provide more
descriptive names and must take hyperparameters into account.

	
class foolbox.attacks.SaltAndPepperNoiseAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/saltandpepper.py#L8-L79]

	Increases the amount of salt and pepper noise until the
image is misclassified.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=100, repetitions=10)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L14-L79]

	Increases the amount of salt and pepper noise until the
image is misclassified.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint

	Number of steps to try between probability 0 and 1.

	repetitionsint

	Specifies how often the attack will be repeated.

	
class foolbox.attacks.BlendedUniformNoiseAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/blended_noise.py#L12-L85]

	Blends the image with a uniform noise image until it
is misclassified.

	
__call__(self, input_or_adv, label=None, unpack=True, epsilons=1000, max_directions=1000)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L18-L85]

	Blends the image with a uniform noise image until it
is misclassified.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	epsilonsint or Iterable[float]

	Either Iterable of blending steps or number of blending steps
between 0 and 1 that should be tried.

	max_directionsint

	Maximum number of random images to try.

Other attacks

	
class foolbox.attacks.BinarizationRefinementAttack(model=None, criterion=<foolbox.criteria.Misclassification object>, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/binarization.py#L9-L139]

	For models that preprocess their inputs by binarizing the
inputs, this attack can improve adversarials found by other
attacks. It does os by utilizing information about the
binarization and mapping values to the corresponding value in
the clean input or to the right side of the threshold.

	
__call__(self, input_or_adv, label=None, unpack=True, starting_point=None, threshold=None, included_in='upper')[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L18-L122]

	For models that preprocess their inputs by binarizing the
inputs, this attack can improve adversarials found by other
attacks. It does os by utilizing information about the
binarization and mapping values to the corresponding value in
the clean input or to the right side of the threshold.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	starting_pointnumpy.ndarray

	Adversarial input to use as a starting point.

	thresholdfloat

	The treshold used by the models binarization. If none,
defaults to (model.bounds()[1] - model.bounds()[0]) / 2.

	included_instr

	Whether the threshold value itself belongs to the lower or
upper interval.

	
class foolbox.attacks.PrecomputedImagesAttack(input_images, output_images, *args, **kwargs)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/precomputed.py#L7-L70]

	Attacks a model using precomputed adversarial candidates.

	Parameters

	
	input_imagesnumpy.ndarray

	The original images that will be expected by this attack.

	output_imagesnumpy.ndarray

	The adversarial candidates corresponding to the input_images.

	*argspositional args

	Poistional args passed to the Attack base class.

	**kwargskeyword args

	Keyword args passed to the Attack base class.

	
__call__(self, input_or_adv, label=None, unpack=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/base.py#L44-L70]

	Attacks a model using precomputed adversarial candidates.

	Parameters

	
	input_or_advnumpy.ndarray or Adversarial

	The original, unperturbed input as a numpy.ndarray or
an Adversarial instance.

	labelint

	The reference label of the original input. Must be passed
if a is a numpy.ndarray, must not be passed if a is
an Adversarial instance.

	unpackbool

	If true, returns the adversarial input, otherwise returns
the Adversarial object.

	
__init__(self, input_images, output_images, *args, **kwargs)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/attacks/precomputed.py#L22-L28]

	Initialize self. See help(type(self)) for accurate signature.

foolbox.adversarial

Provides a class that represents an adversarial example.

	
class foolbox.adversarial.Adversarial(model, criterion, original_image, original_class, distance=<class 'foolbox.distances.MeanSquaredDistance'>, threshold=None, verbose=False)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L19-L452]

	Defines an adversarial that should be found and stores the result.

The Adversarial class represents a single adversarial example
for a given model, criterion and reference image. It can be passed to
an adversarial attack to find the actual adversarial.

	Parameters

	
	modela Model instance

	The model that should be fooled by the adversarial.

	criteriona Criterion instance

	The criterion that determines which images are adversarial.

	original_imagea numpy.ndarray

	The original image to which the adversarial image should
be as close as possible.

	original_classint

	The ground-truth label of the original image.

	distancea Distance class

	The measure used to quantify similarity between images.

	thresholdfloat or Distance

	If not None, the attack will stop as soon as the adversarial
perturbation has a size smaller than this threshold. Can be
an instance of the Distance class passed to the distance
argument, or a float assumed to have the same unit as the
the given distance. If None, the attack will simply minimize
the distance as good as possible. Note that the threshold only
influences early stopping of the attack; the returned adversarial
does not necessarily have smaller perturbation size than this
threshold; the reached_threshold() method can be used to check
if the threshold has been reached.

	
adversarial_class[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py]

	The argmax of the model predictions for the best adversarial found so far.

None if no adversarial has been found.

	
batch_predictions(self, images, greedy=False, strict=True, return_details=False)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L315-L368]

	Interface to model.batch_predictions for attacks.

	Parameters

	
	imagesnumpy.ndarray

	Batch of images with shape (batch size, height, width, channels).

	greedybool

	Whether the first adversarial should be returned.

	strictbool

	Controls if the bounds for the pixel values should be checked.

	
channel_axis(self, batch)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L262-L275]

	Interface to model.channel_axis for attacks.

	Parameters

	
	batchbool

	Controls whether the index of the axis for a batch of images
(4 dimensions) or a single image (3 dimensions) should be returned.

	
distance[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py]

	The distance of the adversarial input to the original input.

	
gradient(self, image=None, label=None, strict=True)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L370-L398]

	Interface to model.gradient for attacks.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).
Defaults to the original image.

	labelint

	Label used to calculate the loss that is differentiated.
Defaults to the original label.

	strictbool

	Controls if the bounds for the pixel values should be checked.

	
has_gradient(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L277-L288]

	Returns true if _backward and _forward_backward can be called
by an attack, False otherwise.

	
image[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py]

	The best adversarial found so far.

	
normalized_distance(self, image)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L165-L183]

	Calculates the distance of a given image to the
original image.

	Parameters

	
	imagenumpy.ndarray

	The image that should be compared to the original image.

	Returns

	
	Distance

	The distance between the given image and the original image.

	
original_class[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py]

	The class of the original input (ground-truth, not model prediction).

	
original_image[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py]

	The original input.

	
output[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py]

	The model predictions for the best adversarial found so far.

None if no adversarial has been found.

	
predictions(self, image, strict=True, return_details=False)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L290-L313]

	Interface to model.predictions for attacks.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).

	strictbool

	Controls if the bounds for the pixel values should be checked.

	
predictions_and_gradient(self, image=None, label=None, strict=True, return_details=False)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L400-L437]

	Interface to model.predictions_and_gradient for attacks.

	Parameters

	
	imagenumpy.ndarray

	Image with shape (height, width, channels).
Defaults to the original image.

	labelint

	Label used to calculate the loss that is differentiated.
Defaults to the original label.

	strictbool

	Controls if the bounds for the pixel values should be checked.

	
reached_threshold(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L185-L189]

	Returns True if a threshold is given and the currently
best adversarial distance is smaller than the threshold.

	
target_class(self)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/adversarial.py#L236-L244]

	Interface to criterion.target_class for attacks.

foolbox.utils

	
foolbox.utils.softmax(logits)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/utils.py#L6-L27]

	Transforms predictions into probability values.

	Parameters

	
	logitsarray_like

	The logits predicted by the model.

	Returns

	
	numpy.ndarray

	Probability values corresponding to the logits.

	
foolbox.utils.crossentropy(label, logits)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/utils.py#L30-L56]

	Calculates the cross-entropy.

	Parameters

	
	logitsarray_like

	The logits predicted by the model.

	labelint

	The label describing the target distribution.

	Returns

	
	float

	The cross-entropy between softmax(logits) and onehot(label).

	
foolbox.utils.batch_crossentropy(label, logits)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/utils.py#L59-L86]

	Calculates the cross-entropy for a batch of logits.

	Parameters

	
	logitsarray_like

	The logits predicted by the model for a batch of inputs.

	labelint

	The label describing the target distribution.

	Returns

	
	np.ndarray

	The cross-entropy between softmax(logits[i]) and onehot(label)
for all i.

	
foolbox.utils.binarize(x, values, threshold=None, included_in='upper')[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/utils.py#L89-L117]

	Binarizes the values of x.

	Parameters

	
	valuestuple of two floats

	The lower and upper value to which the inputs are mapped.

	thresholdfloat

	The threshold; defaults to (values[0] + values[1]) / 2 if None.

	included_instr

	Whether the threshold value itself belongs to the lower or
upper interval.

	
foolbox.utils.imagenet_example(shape=(224, 224), data_format='channels_last')[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/utils.py#L120-L151]

	Returns an example image and its imagenet class label.

	Parameters

	
	shapelist of integers

	The shape of the returned image.

	data_formatstr

	“channels_first” or “channels_last”

	Returns

	
	imagearray_like

	The example image.

	labelint

	The imagenet label associated with the image.

	
foolbox.utils.onehot_like(a, index, value=1)[source] [https://github.com/bethgelab/foolbox/blob/master/foolbox/utils.py#L154-L178]

	Creates an array like a, with all values
set to 0 except one.

	Parameters

	
	aarray_like

	The returned one-hot array will have the same shape
and dtype as this array

	indexint

	The index that should be set to value

	valuesingle value compatible with a.dtype

	The value to set at the given index

	Returns

	
	numpy.ndarray

	One-hot array with the given value at the given
location and zeros everywhere else.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 foolbox	

 	
 	
 foolbox.adversarial	

 	
 	
 foolbox.attacks	

 	
 	
 foolbox.criteria	

 	
 	
 foolbox.distances	

 	
 	
 foolbox.models	

 	
 	
 foolbox.utils	

 	
 	
 foolbox.zoo	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

_

 	
 	__call__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.ADefAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	(foolbox.attacks.BinarizationRefinementAttack method)

 	(foolbox.attacks.BlendedUniformNoiseAttack method)

 	(foolbox.attacks.BoundaryAttack method)

 	(foolbox.attacks.CarliniWagnerL2Attack method)

 	(foolbox.attacks.ContrastReductionAttack method)

 	(foolbox.attacks.DeepFoolAttack method)

 	(foolbox.attacks.DeepFoolL2Attack method)

 	(foolbox.attacks.DeepFoolLinfinityAttack method)

 	(foolbox.attacks.GaussianBlurAttack method)

 	(foolbox.attacks.GradientAttack method)

 	(foolbox.attacks.GradientSignAttack method)

 	(foolbox.attacks.IterativeGradientAttack method)

 	(foolbox.attacks.IterativeGradientSignAttack method)

 	(foolbox.attacks.L1BasicIterativeAttack method)

 	(foolbox.attacks.L2BasicIterativeAttack method)

 	(foolbox.attacks.LBFGSAttack method)

 	(foolbox.attacks.LinfinityBasicIterativeAttack method)

 	(foolbox.attacks.LocalSearchAttack method)

 	(foolbox.attacks.MomentumIterativeAttack method)

 	(foolbox.attacks.NewtonFoolAttack method)

 	(foolbox.attacks.PointwiseAttack method)

 	(foolbox.attacks.PrecomputedImagesAttack method)

 	(foolbox.attacks.ProjectedGradientDescentAttack method)

 	(foolbox.attacks.RandomStartProjectedGradientDescentAttack method)

 	(foolbox.attacks.SLSQPAttack method)

 	(foolbox.attacks.SaliencyMapAttack method)

 	(foolbox.attacks.SaltAndPepperNoiseAttack method)

 	(foolbox.attacks.SinglePixelAttack method)

 	(foolbox.attacks.SpatialAttack method)

 	__class__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__delattr__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__dir__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	__eq__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	
 	__format__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	__ge__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__getattribute__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__gt__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__hash__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__init__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	(foolbox.attacks.ApproximateLBFGSAttack method)

 	(foolbox.attacks.LBFGSAttack method)

 	(foolbox.attacks.PrecomputedImagesAttack method)

 	__le__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__lt__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__ne__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__new__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	__reduce__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	__reduce_ex__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	__repr__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__setattr__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__sizeof__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	__str__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

 	__subclasshook__() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	__weakref__ (foolbox.attacks.AdditiveGaussianNoiseAttack attribute)

 	(foolbox.attacks.AdditiveUniformNoiseAttack attribute)

A

 	
 	AdditiveGaussianNoiseAttack (class in foolbox.attacks)

 	AdditiveUniformNoiseAttack (class in foolbox.attacks)

 	ADefAttack (class in foolbox.attacks)

 	
 	Adversarial (class in foolbox.adversarial)

 	adversarial_class (foolbox.adversarial.Adversarial attribute)

 	ApproximateLBFGSAttack (class in foolbox.attacks)

B

 	
 	backward() (foolbox.models.CompositeModel method)

 	(foolbox.models.DifferentiableModel method)

 	(foolbox.models.KerasModel method)

 	(foolbox.models.LasagneModel method)

 	(foolbox.models.MXNetGluonModel method)

 	(foolbox.models.MXNetModel method)

 	(foolbox.models.PyTorchModel method)

 	(foolbox.models.TensorFlowEagerModel method)

 	(foolbox.models.TensorFlowModel method)

 	(foolbox.models.TheanoModel method)

 	BasicIterativeMethod (in module foolbox.attacks)

 	batch_crossentropy() (in module foolbox.utils)

 	batch_predictions() (foolbox.adversarial.Adversarial method)

 	(foolbox.models.CompositeModel method)

 	(foolbox.models.KerasModel method)

 	(foolbox.models.LasagneModel method)

 	(foolbox.models.MXNetGluonModel method)

 	(foolbox.models.MXNetModel method)

 	(foolbox.models.Model method)

 	(foolbox.models.ModelWrapper method)

 	(foolbox.models.PyTorchModel method)

 	(foolbox.models.TensorFlowEagerModel method)

 	(foolbox.models.TensorFlowModel method)

 	(foolbox.models.TheanoModel method)

 	
 	best_other_class() (foolbox.attacks.CarliniWagnerL2Attack static method)

 	BIM (in module foolbox.attacks)

 	BinarizationRefinementAttack (class in foolbox.attacks)

 	binarize() (in module foolbox.utils)

 	BlendedUniformNoiseAttack (class in foolbox.attacks)

 	BoundaryAttack (class in foolbox.attacks)

C

 	
 	CarliniWagnerL2Attack (class in foolbox.attacks)

 	channel_axis() (foolbox.adversarial.Adversarial method)

 	CompositeModel (class in foolbox.models)

 	
 	ConfidentMisclassification (class in foolbox.criteria)

 	ContrastReductionAttack (class in foolbox.attacks)

 	Criterion (class in foolbox.criteria)

 	crossentropy() (in module foolbox.utils)

D

 	
 	DeepFoolAttack (class in foolbox.attacks)

 	DeepFoolL2Attack (class in foolbox.attacks)

 	DeepFoolLinfinityAttack (class in foolbox.attacks)

 	
 	DifferentiableModel (class in foolbox.models)

 	DifferentiableModelWrapper (class in foolbox.models)

 	Distance (class in foolbox.distances)

 	distance (foolbox.adversarial.Adversarial attribute)

F

 	
 	fetch_weights() (in module foolbox.zoo)

 	FGSM (in module foolbox.attacks)

 	foolbox.adversarial (module)

 	foolbox.attacks (module)

 	foolbox.criteria (module)

 	
 	foolbox.distances (module)

 	foolbox.models (module)

 	foolbox.utils (module)

 	foolbox.zoo (module)

 	from_keras() (foolbox.models.TensorFlowModel class method)

G

 	
 	GaussianBlurAttack (class in foolbox.attacks)

 	get_model() (in module foolbox.zoo)

 	gradient() (foolbox.adversarial.Adversarial method)

 	(foolbox.models.CompositeModel method)

 	(foolbox.models.DifferentiableModel method)

 	(foolbox.models.LasagneModel method)

 	(foolbox.models.TensorFlowModel method)

 	(foolbox.models.TheanoModel method)

 	
 	GradientAttack (class in foolbox.attacks)

 	GradientSignAttack (class in foolbox.attacks)

H

 	
 	has_gradient() (foolbox.adversarial.Adversarial method)

I

 	
 	image (foolbox.adversarial.Adversarial attribute)

 	imagenet_example() (in module foolbox.utils)

 	is_adversarial() (foolbox.criteria.ConfidentMisclassification method)

 	(foolbox.criteria.Criterion method)

 	(foolbox.criteria.Misclassification method)

 	(foolbox.criteria.OriginalClassProbability method)

 	(foolbox.criteria.TargetClass method)

 	(foolbox.criteria.TargetClassProbability method)

 	(foolbox.criteria.TopKMisclassification method)

 	
 	IterativeGradientAttack (class in foolbox.attacks)

 	IterativeGradientSignAttack (class in foolbox.attacks)

K

 	
 	KerasModel (class in foolbox.models)

L

 	
 	L0 (class in foolbox.distances)

 	L1BasicIterativeAttack (class in foolbox.attacks)

 	L2BasicIterativeAttack (class in foolbox.attacks)

 	LasagneModel (class in foolbox.models)

 	LBFGSAttack (class in foolbox.attacks)

 	
 	Linf (in module foolbox.distances)

 	Linfinity (class in foolbox.distances)

 	LinfinityBasicIterativeAttack (class in foolbox.attacks)

 	LocalSearchAttack (class in foolbox.attacks)

 	loss_function() (foolbox.attacks.CarliniWagnerL2Attack class method)

M

 	
 	MAE (in module foolbox.distances)

 	MeanAbsoluteDistance (class in foolbox.distances)

 	MeanSquaredDistance (class in foolbox.distances)

 	Misclassification (class in foolbox.criteria)

 	Model (class in foolbox.models)

 	ModelWithEstimatedGradients (class in foolbox.models)

 	
 	ModelWithoutGradients (class in foolbox.models)

 	ModelWrapper (class in foolbox.models)

 	MomentumIterativeAttack (class in foolbox.attacks)

 	MomentumIterativeMethod (in module foolbox.attacks)

 	MSE (in module foolbox.distances)

 	MXNetGluonModel (class in foolbox.models)

 	MXNetModel (class in foolbox.models)

N

 	
 	name() (foolbox.attacks.AdditiveGaussianNoiseAttack method)

 	(foolbox.attacks.AdditiveUniformNoiseAttack method)

 	(foolbox.attacks.LBFGSAttack method)

 	(foolbox.criteria.ConfidentMisclassification method)

 	(foolbox.criteria.Criterion method)

 	(foolbox.criteria.Misclassification method)

 	(foolbox.criteria.OriginalClassProbability method)

 	(foolbox.criteria.TargetClass method)

 	(foolbox.criteria.TargetClassProbability method)

 	(foolbox.criteria.TopKMisclassification method)

 	NewtonFoolAttack (class in foolbox.attacks)

 	
 	normalized_distance() (foolbox.adversarial.Adversarial method)

 	num_classes() (foolbox.models.CompositeModel method)

 	(foolbox.models.KerasModel method)

 	(foolbox.models.LasagneModel method)

 	(foolbox.models.MXNetGluonModel method)

 	(foolbox.models.MXNetModel method)

 	(foolbox.models.Model method)

 	(foolbox.models.ModelWrapper method)

 	(foolbox.models.PyTorchModel method)

 	(foolbox.models.TensorFlowEagerModel method)

 	(foolbox.models.TensorFlowModel method)

 	(foolbox.models.TheanoModel method)

O

 	
 	onehot_like() (in module foolbox.utils)

 	original_class (foolbox.adversarial.Adversarial attribute)

 	
 	original_image (foolbox.adversarial.Adversarial attribute)

 	OriginalClassProbability (class in foolbox.criteria)

 	output (foolbox.adversarial.Adversarial attribute)

P

 	
 	PointwiseAttack (class in foolbox.attacks)

 	PrecomputedImagesAttack (class in foolbox.attacks)

 	predictions() (foolbox.adversarial.Adversarial method)

 	(foolbox.models.Model method)

 	(foolbox.models.ModelWrapper method)

 	predictions_and_gradient() (foolbox.adversarial.Adversarial method)

 	(foolbox.models.CompositeModel method)

 	(foolbox.models.DifferentiableModel method)

 	(foolbox.models.KerasModel method)

 	(foolbox.models.LasagneModel method)

 	(foolbox.models.MXNetGluonModel method)

 	(foolbox.models.MXNetModel method)

 	(foolbox.models.PyTorchModel method)

 	(foolbox.models.TensorFlowEagerModel method)

 	(foolbox.models.TensorFlowModel method)

 	(foolbox.models.TheanoModel method)

 	
 	ProjectedGradientDescent (in module foolbox.attacks)

 	ProjectedGradientDescentAttack (class in foolbox.attacks)

 	PyTorchModel (class in foolbox.models)

R

 	
 	RandomPGD (in module foolbox.attacks)

 	RandomProjectedGradientDescent (in module foolbox.attacks)

 	
 	RandomStartProjectedGradientDescentAttack (class in foolbox.attacks)

 	reached_threshold() (foolbox.adversarial.Adversarial method)

S

 	
 	SaliencyMapAttack (class in foolbox.attacks)

 	SaltAndPepperNoiseAttack (class in foolbox.attacks)

 	SinglePixelAttack (class in foolbox.attacks)

 	
 	SLSQPAttack (class in foolbox.attacks)

 	softmax() (in module foolbox.utils)

 	SpatialAttack (class in foolbox.attacks)

T

 	
 	target_class() (foolbox.adversarial.Adversarial method)

 	TargetClass (class in foolbox.criteria)

 	TargetClassProbability (class in foolbox.criteria)

 	
 	TensorFlowEagerModel (class in foolbox.models)

 	TensorFlowModel (class in foolbox.models)

 	TheanoModel (class in foolbox.models)

 	TopKMisclassification (class in foolbox.criteria)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Foolbox

 		
 Installation

 		
 Stable release

 		
 Development version

 		
 Contributing to Foolbox

 		
 Tutorial

 		
 Creating a model

 		
 Specifying the criterion

 		
 Running the attack

 		
 Visualizing the adversarial examples

 		
 Examples

 		
 Creating a model

 		
 Keras: ResNet50

 		
 PyTorch: ResNet18

 		
 TensorFlow: VGG19

 		
 Applying an attack

 		
 FGSM (GradientSignAttack)

 		
 Creating an untargeted adversarial for a PyTorch model

 		
 Creating a targeted adversarial for the Keras ResNet model

 		
 Advanced

 		
 Implicit

 		
 Explicit

 		
 Model Zoo

 		
 Downloading a model

 		
 Development

 		
 Running Tests

 		
 pytest

 		
 flake8

 		
 New Adversarial Attacks

 		
 FAQ

 		
 foolbox.models

 		
 Models

 		
 Wrappers

 		
 Detailed description

 		
 foolbox.criteria

 		
 Criteria

 		
 Examples

 		
 Detailed description

 		
 foolbox.zoo

 		
 Get Model

 		
 Fetch Weights

 		
 foolbox.distances

 		
 Distances

 		
 Aliases

 		
 Base class

 		
 Detailed description

 		
 foolbox.attacks

 		
 foolbox.adversarial

 		
 foolbox.utils

_images/benchmark_banner.png
Announcing the

ROBUST VISION BENCHMARK

https://robust.vision/benchmark

Pitching machine learning models against
adversarial attacks to pave the way towards
robust and safe Al.

_static/ajax-loader.gif

